Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML

Aniruddh Raghu*, Maithra Raghu*, Samy Bengio, Oriol Vinyals

Few Shot Learning

Many tasks, little data for each task

Task 1
Dog/Cat

Task 2
Chair/Lion

Task 3
Plane/Tree

Few Shot Learning

(Optimization-based) Meta Learning Algorithms

Model Agnostic Meta Learning, (Finn et al), ICML 2017

Few Shot Learning

(Optimization-based) Meta Learning Algorithms

Model Agnostic Meta Learning, (Finn et al), ICML 2017

Outer Loop: meta-initialization; Inner Loop: adaptation

Outer Loop: meta-initialization; Inner Loop: adaptation

Feature Reuse

How do hidden representations behave (during inner loop)?

Measure Representation Similarity

How do hidden representations behave (during inner loop)?

https://github.com/google/svcca

How do hidden representations behave (during inner loop)?

Measure Representation Similarity

SVCCA Before/After Inner Loop

SVCCA Before/After Inner Loop

SVCCA Before/After Inner Loop

ANIL: Almost No Inner Loop Algorithm

ANIL: Almost No Inner Loop Algorithm

 Removes inner loop for all but head of network

 Much more computationally efficient, same performance

 Insights into meta learning and few shot learning

ANIL: Performance Results

Matches performance of MAML in few-shot classification and RL

Method	Omniglot-20way-1shot	Omniglot-20way-5shot	MiniImageNet-5way-1shot	MiniImageNet-5way-5shot
MAML	93.7 ± 0.7	96.4 ± 0.1	46.9 ± 0.2	63.1 ± 0.4
ANIL	96.2 ± 0.5	98.0 ± 0.3	46.7 ± 0.4	61.5 ± 0.5

Method Ha	alfCheetah-Direction	HalfCheetah-Velocity	2D-Navigation
MAML	$170.4 \pm 21.0 \\ 363.2 \pm 14.8$	-139.0 ± 18.9	-20.3 ± 3.2
ANIL		-120.9 ± 6.3	-20.1 ± 2.3

ANIL and NIL (No Inner Loop)

NIL: No Inner Loop (at test time), performs equally well

Method	Omniglot-20way-1shot	Omniglot-20way-5shot	MiniImageNet-5way-1shot	MiniImageNet-5way-5shot
MAML	93.7 ± 0.7	96.4 ± 0.1	46.9 ± 0.2	63.1 ± 0.4
ANIL	96.2 ± 0.5	98.0 ± 0.3	46.7 ± 0.4	61.5 ± 0.5
NIL	96.7 ± 0.3	98.0 ± 0.04	48.0 ± 0.7	62.2 ± 0.5

Thanks and Future Directions

http://learn2learn.net/tutorials/anil_tutorial/ANIL_tutorial/

- Exploring Medium Shot Learning?
- Meta-Learning as Pretraining?
- Learning Regimes for Interpolating between Rapid Learning and Feature Reuse?

Theoretical Analysis: Few-Shot Learning via Learning the Representation, Provably, (Du, Hu, Kakade, Lee, Lei)

Analyzing Feature Reuse: Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need?, (Tian, Wang, Krishnan, Tenenbaum, Isola)

 We implement ANIL with learn2learn and provide additional results of how ANIL performs on other datasets.
 Lasth, we explain the implementation code stee-be-step, making it easy for users to try ANIL on

other datasets