I I I H Bl Massachusetts

I Institute of
Technology

Rapid Learning or Feature Reuse?
Towards Understanding the Effectiveness of MAML

Q DeepMind

Aniruddh Raghu*, Maithra Raghu*, Samy Bengio, Oriol Vinyals

Introduction

e Model Agnostic Meta-Learning (MAML) is a highly popular and
successful algorithm for few-shot learning.

MAML algorithm has two optimisation loops:

o QOuter loop: Find an effective meta-initialisation

o Inner loop: Using this initialisation, adapt parameters via
gradient descent to solve each target task

Despite its popularity, it is unclear whether MAML works due to :
o Rapid Learning: efficient but significant representational

adaptation

o Feature Reuse: meta-initialisation already has high-quality
representations, so can just reuse these

We analyse MAML and find that Feature reuse is the dominant

mode of operation.

Motivated by our analysis, we propose two simplified algorithms,

with same performance

Rapid Learning and Feature Reuse

e Rapid learning involves large parameter changes on inner loop,
whereas feature reuse involves little specialisation

Rapid Learning

Feature Reuse

Feature Reuse Dominates

e We perform two sets of analyses:
o Layer Freezing: Do not update contiguous subset of layers

of the network, during the inner loop at inference time.

Examine FSL performance to no freezing.

o Representational Similarity: Apply Canonical Correlation

Analysis (CCA) to the latent representations of the network;

compare pre and post inner loop updates.

e Results: we see:
(1) Freezing layers does not affect performance

(
(

——p Outer loop

————— » Inner loop

2) Layers are highly similar pre/post inner loop updates.
3) Above is true from early on in training.

e Significant features reuse is occurring!

=
=

£
©

CCA Similarity
Qo O o o
(o)}

"~ Convl

CCA Similarity Before and After
Inner Loop Adaptation

o0}

~

Ul

O
w H

S
-~
-
-~
-~
-~

lteration 10000
® Iteration 20000
® Iteration 30000

7L 4
i
2
7
T
e
2’
r’,

Cohv3 Cohv4 Héad

Layer

Cohvz

Validation Accuracy

0 1

(o))
U

(o))
o

9]
(9]

Validation Set Accuracy Freezing
Consecutive Layers in Inner Loop

@ Iteration 10000; None: 59.9%:; (1,2,3,4): 58.4%
® Iteration 20000; None: 61.5%; (1,2,3,4): 60.4%
® Iteration 30000; None: 61.7%; (1,2,3,4): 60.2%

e
I ____________ I _____“_““I—\\ ‘\;:::::::::::i
N e 3
None 1 1,2 1,2,3 1,2,3,4

Layers Frozen

ANIL and NIL Algorithms

e Inner loop has little effect at inference time. But what about at
training time?

e Introduce ANIL (Almost No Inner Loop) algorithm -- no inner
loop at training time either, for network body. Keep for head to
allow alignment. Pictorially:

MAML ANIL
. /(91 B (‘ﬂ'gé (6’)\ 9* aps / 61 \
eTb A: 0, — OL1,(0) e 02

« I
Tasky, 50, Taskp, b Oln(0)
/ On d‘—(lé)Lj%(H) ,’ _ aehe%i/
9 // aehead/ 9 \\/\

~ _
0 = (91,92,9head) \\ RN 0 = (‘9179278head) ! \\\ 2 S
|
I
I

T~ 0 : DR < HTC

Taskr ; 0: TaSde 05{ : Tasch
Ty

e Further consider NIL (No Inner Loop) algorithm -- train with
ANIL, remove network head at test time, and classify based on
cosine distance nearest neighbours from support set.

e Accuracy: ANIL and NIL perform identically to MAML!
o We (mostly) don’t need inner loop at training time
o We can remove inner loop entirely at test time

Method | MinilmageNet MinilmageNet
5 way 1 shot 5 way 5 shot
MAML 46.9 £ 0.2 63.1+£04
ANIL 46.7 £ 0.4 61.5+0.5
NIL 48.0 £ 0.7 62.2+0.5

e Computational benefit: ANIL obtains:
o Training: ~1.7x speedup over MAML
o Inference: ~4x speedup over MAML
o Without sacrificing performance

MAML Head Learns Better Features

e NIL removes the network head at test time: no performance drop

e What is role of head at training time?
o Compare performance using ANIL (ie, MAML head) to different
methods of Feature learning, and assess performance with
nearest nbors:

Method | MinilmageNet MinilmageNet
5 way 1 shot 5 way 5 shot
ANIL 46.7 £ 0.4 61.5+0.5
Multiclass 39.7 +0.3 54.4 + 0.5
Multitask 26.5+1.1 34.2 + 3.5

e Head permits better feature learning over other baselines.
Addressing alignment issue — significant improvement over
multitask training.

Conclusions

e Feature reuse dominates in MAML — leads to simpler methods
e Interesting to explore more diverse tasks, datasets

Acknowledgements

The authors would like to thank Geoffrey Hinton, Chelsea Finn, Hugo Larochelle and Chiyuan Zhang for
helpful comments and suggestions.

