

Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML Aniruddh Raghu*, Maithra Raghu*, Samy Bengio, Oriol Vinyals

Introduction

- Model Agnostic Meta-Learning (MAML) is a highly popular and successful algorithm for few-shot learning.
- MAML algorithm has two optimisation loops:
 - Outer loop: Find an effective meta-initialisation
 - Inner loop: Using this initialisation, adapt parameters via gradient descent to solve each target task
- Despite its popularity, it is unclear whether MAML works due to :
 - **Rapid Learning:** efficient but significant representational adaptation
 - **Feature Reuse:** meta-initialisation already has high-quality representations, so can just reuse these

ANIL and NIL Algorithms

- Inner loop has little effect at inference time. But what about at training time?
- Introduce **ANIL (Almost No Inner Loop)** algorithm -- no inner loop at training time either, for network body. Keep for head to allow alignment. Pictorially:

- We analyse MAML and find that **feature reuse** is the dominant mode of operation.
- Motivated by our analysis, we propose two simplified algorithms, with same performance

Rapid Learning and Feature Reuse

• Rapid learning involves large parameter changes on inner loop, whereas feature reuse involves little specialisation

- Further consider **NIL (No Inner Loop)** algorithm -- train with ANIL, remove network head at test time, and classify based on cosine distance nearest neighbours from support set.
- Accuracy: ANIL and NIL perform identically to MAML!
 - We (mostly) don't need inner loop at training time
 - We can remove inner loop entirely at test time

Method	MinilmageNet 5 way 1 shot	MinilmageNet 5 way 5 shot
MAML	46.9 ± 0.2	63.1 ± 0.4
ANIL	46.7 ± 0.4	61.5 ± 0.5
NIL	48.0 ± 0.7	62.2 ± 0.5

- **Computational benefit:** ANIL obtains:
 - Training: ~1.7x speedup over MAML
 - Inference: ~4x speedup over MAML
 - Without sacrificing performance

Feature Reuse Dominates

- We perform two sets of analyses:
 - Layer Freezing: Do not update contiguous subset of layers of the network, during the inner loop at inference time. Examine FSL performance to no freezing.
 - Representational Similarity: Apply Canonical Correlation Analysis (CCA) to the latent representations of the network; compare pre and post inner loop updates.

• **Results:** we see:

(1) Freezing layers does not affect performance(2) Layers are highly similar pre/post inner loop updates.(3) Above is true from early on in training.

• Significant features reuse is occurring!

MAML Head Learns Better Features

• NIL removes the network head at test time: no performance drop

• What is role of head at training time?

 Compare performance using ANIL (ie, MAML head) to different methods of feature learning, and assess performance with nearest nbors:

Method	MinilmageNet 5 way 1 shot	MinilmageNet 5 way 5 shot
ANIL	46.7 ± 0.4	61.5 ± 0.5
Multiclass	39.7 ± 0.3	54.4 ± 0.5
Multitask	26.5 ± 1.1	34.2 ± 3.5

 Head permits better feature learning over other baselines. Addressing alignment issue → significant improvement over multitask training.

Conclusions

• Feature reuse dominates in MAML \rightarrow leads to simpler methods

