Rapid Learning or Feature Reuse?
Towards Understanding the Effectiveness of MAML

Aniruddh Raghu*, Maithra Raghu*, Samy Bengio, Oriol Vinyals

Introduction
- Model Agnostic Meta-Learning (MAML) is a highly popular and successful algorithm for few-shot learning.
- MAML algorithm has two optimisation loops:
 - Outer loop: Find an effective meta-initialisation
 - Inner loop: Using this initialisation, adapt parameters via gradient descent to solve each target task
- Despite its popularity, it is unclear whether MAML works due to:
 - Rapid Learning: efficient but significant representational adaptation
 - Feature Reuse: meta-initialisation already has high-quality representations, so can just reuse these
- We analyse MAML and find that feature reuse is the dominant mode of operation.
- Motivated by our analysis, we propose two simplified algorithms, with same performance

Rapid Learning and Feature Reuse
- Rapid learning involves large parameter changes on inner loop, whereas feature reuse involves little specialisation

Feature Reuse Dominates
- We perform two sets of analyses:
 - Layer Freezing: Do not update contiguous subset of layers of the network, during the inner loop at inference time.
 - Examine FSL performance to no freezing.
 - Representational Similarity: Apply Canonical Correlation Analysis (CCA) to the latent representations of the network; compare pre and post inner loop updates.
- Results: we see:
 1. Freezing layers does not affect performance
 2. Layers are highly similar pre/post inner loop updates.
 3. Above is true from early on in training.
- Significant features reuse is occurring!

ANIL and NIL Algorithms
- Inner loop has little effect at inference time. But what about at training time?
- Introduce ANIL (Almost No Inner Loop) algorithm -- no inner loop at training time either, for network body. Keep for head to allow alignment. Pictorially:
- We further consider NIL (No Inner Loop) algorithm -- train with ANIL, remove network head at test time, and classify based on cosine distance nearest neighbours from support set.
- Accuracy: ANIL and NIL perform identically to MAML!
 - We (mostly) don’t need inner loop at training time
 - We can remove inner loop entirely at test time

MAML Head Learns Better Features
- NIL removes the network head at test time: no performance drop
- What is role of head at training time?
 - Compare performance using ANIL (ie, MAML head) to different methods of feature learning, and assess performance with nearest nbors:

<table>
<thead>
<tr>
<th>Method</th>
<th>MinImageNet 5 way 1 shot</th>
<th>MinImageNet 5 way 5 shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAML</td>
<td>46.9 ± 0.2</td>
<td>63.1 ± 0.4</td>
</tr>
<tr>
<td>ANIL</td>
<td>46.7 ± 0.4</td>
<td>61.5 ± 0.5</td>
</tr>
<tr>
<td>NIL</td>
<td>48.0 ± 0.7</td>
<td>62.2 ± 0.5</td>
</tr>
</tbody>
</table>

- Computational benefit: ANIL obtains:
 - Training: ~1.7x speedup over MAML
 - Inference: ~4x speedup over MAML
 - Without sacrificing performance

Conclusions
- Feature reuse dominates in MAML → leads to simpler methods
- Interesting to explore more diverse tasks, datasets

Acknowledgements

The authors would like to thank Geoffrey Hinton, Chelsea Finn, Hugo Larochelle and Chiyuan Zhang for helpful comments and suggestions.

Rapid Learning vs Feature Reuse

![Diagram: Rapid Learning and Feature Reuse](image)

Feature Reuse Dominates

- Layer Freezing: Do not update contiguous subset of layers of the network, during the inner loop at inference time.
- Examine FSL performance to no freezing.
- Representational Similarity: Apply Canonical Correlation Analysis (CCA) to the latent representations of the network; compare pre and post inner loop updates.

Results:
1. Freezing layers does not affect performance
2. Layers are highly similar pre/post inner loop updates.
3. Above is true from early on in training.

Rapid Learning vs Feature Reuse

- Rapid learning involves large parameter changes on inner loop, whereas feature reuse involves little specialisation