
INSIGHTS FROM DEEP REPRESENTATIONS FOR
MACHINE LEARNING SYSTEMS AND HUMAN

COLLABORATIONS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Maithra Raghu

August 2020

c© 2020 Maithra Raghu

ALL RIGHTS RESERVED

INSIGHTS FROM DEEP REPRESENTATIONS FOR MACHINE LEARNING

SYSTEMS AND HUMAN COLLABORATIONS

Maithra Raghu, Ph.D.

Cornell University 2020

Over the past several years, we have witnessed fundamental breakthroughs

in machine learning, largely driven by rapid advancements of the underlying

deep neural network models and algorithms. This has consequently spurred

the development of new, powerful machine learning systems, with emerging

applications in specialized, high-stakes domains such as medicine. However,

the increased capabilities of these novel systems come at a cost of much greater

complexity, with the design of machine learning systems becoming ever more

laborious, computationally expensive and opaque. This can result in catastrophic

failures and significantly hinders effective collaboration with human experts,

often central to successful deployment. In this thesis, we present research results

that take steps to addressing these challenges. Having first overviewed some of

the key deep learning models, algorithms and use cases, we begin by introducing

quantitative techniques that can give insights into neural network hidden repre-

sentations, which provide both fundamental understanding on central aspects

of machine learning, and also inform algorithms for efficiently learning and

training these complex systems. Finally, we study how these fully trained AI

systems can be adapted to work effectively with human experts, resulting in

better outcomes than either humans or AI alone. We conclude with a discussion

on the many rich further directions and open questions for future study.

BIOGRAPHICAL SKETCH

Maithra Raghu is a Computer Science PhD Candidate at Cornell University.

Her research centers on developing quantitative tools to gain insights into deep

neural network representations, and using these insights to inform better design

and training of machine learning systems, as well as investigations on how these

systems can effectively collaborate with human experts. Her work has been

published in conferences such as NeurIPS, ICML, ICLR, WWW and has also

been covered by many press outlets including The Washington Post, WIRED

and Quanta Magazine. She has been named one of the Forbes 30 Under 30 in

Science and a Rising Star in EECS. Prior to her PhD, Maithra received her BA and

Masters in Mathematics with First Class Honors at the University of Cambridge.

iii

ACKNOWLEDGEMENTS

This PhD journey and its rich experiences, from exploring central scientific

questions, to participating/organizing conferences, to the numerous friendships

made, would not have been possible without the guidance and support of many

people.

Firstly, I would like to thank my close collaborators Chiyuan Zhang, Katy

Blumer, Ben Poole, Justin Gilmer, Alex Irpan, Ari Morcos and Jacob Andreas.

Very grateful to all of you for both our exciting joint projects and many fruitful

research discussions! I would also like to thank my early collaborators Tamas

Sarlos, Ravi Kumar and Andrew Tomkins who introduced me to aspects of data

science and machine learning, and to Surya Ganguli and Jascha Sohl-Dickstein

who cemented my interests in deep learning.

The process of learning how to effectively explore open directions, assimilate

key ideas from prior work, ask critical questions and formulate new problems is

a highly rewarding one but can also be a tumultuous experience. In the multiple

years it takes to become adept at all of these skills, there is at least one point in

time where many things may be failing all at once! During times like those, as

well as other critical points during the PhD, I’ve been very fortunate to have

the support of many mentor figures who provided advice and encouragement.

Thank you to Jason Yosinski, David Sontag, Aleksander Madry, Peter Norvig,

Alex Smola, Fernanda Viegas, Martin Wattenberg, Diane Greene, Quoc Le, Oriol

Vinyals, Johan Ugander, Edith Cohen, Chris Manning, Jure Leskovec, Jitendra

Malik, Jack Po, Zak Stone, Nati Srebro, Sanjeev Arora, Bobby Kleinberg, Kilian

Weinberger and of course Jon Kleinberg for your time and inspiration!

In many of my projects, I’ve been fortunate to collaborate with researchers at

iv

Google, which added a huge amount of depth (no deep learning puns intended)

to my perspectives on identifying and defining problems. I’m extremely grateful

to Quoc Le, Samy Bengio, Jeff Dean and Deanna Chen for all the support on the

Google side, and Becky Stewart, Bobby Kleinberg, Kilian Weinberger and Jon

Kleinberg for advice and support on the Cornell side. These projects wouldn’t

have been possible without you!

Saving most important till last, I want to extend my deepest gratitude to

my closest mentors and collaborators in this journey. Thank you Sendhil Mul-

lainathan for advice, encouragement, and vision on the creative ways machine

learning can be used across many domains. Thank you Dave Donoho for all of

your guidance — I am always in admiration of your incredible insights on both

theoretical and empirical approaches to understanding deep learning. The NAS

colloquium we co-organized will remain one of my most exciting and memorable

graduate school experiences! Thank you Eric Schmidt, for the encouragement,

inspiration and enriching perspectives on the advances in this field and how

they apply in much broader contexts. Formulating and writing our survey paper

has been a wonderfully rewarding experience! Thank you to Geoff Hinton, for

always listening to new ideas with such an open mind, and the encouraging,

pragmatic feedback — some of these discussions were pivotal in informing my

research directions! Your creativity and integrity never ceases to inspire!

A huge thank you to Samy Bengio, who has been a second advisor to me.

Our numerous research discussions and the resulting projects were central to

my graduate school experience, especially in informing my knowledge on the

breadth of techniques in the field, and how they might interface with the ques-

tions at hand. And even beyond research collaborations, I am especially grateful

for your advice and friendship through the past several years! Hoping to keep

v

up with all of this going forwards.

And finally, it is hard to express how grateful I am to Jon Kleinberg. From

guidance and on-point feedback when exploring new research directions, to

encouragement when things weren’t working, to articulate insights on research

and the scientific pursuit as a whole. Our conversations and many years of

collaboration has been foundational not only to my research but my core beliefs

as a scientist. I am also always in awe of your perceptiveness on so many topics,

be they technical, societal or any hybrid of the two. Thank you so much for

your time, camaraderie, and wisdom during this journey, and I look forward to

working together more in this next stage!

On the professional and personal side, I am very fortunate to have many

wonderful women in STEM peers. Meera Ramaswamy, Anna Goldie, Azalia

Mirhoseni, Arathi Mani, Pooja Sethi, Sarah Tan, Chelsea Finn, Katy Blumer, Kate

Niehaus and Ramya Ramakrishnan — you have been my inspirations, friends

and mentors through this journey. Thank you for everything!

Finally, a huge thank you to my parents for all of their love and support, my

brother Aniruddh Raghu for being both an inspirational sibling and a co-author

(hoping we write more papers together), and my better half Arun Chaganty for

all of your love, advice and encouragement — wouldn’t have made it to the end

without you!

vi

TABLE OF CONTENTS

Biographical Sketch . iii

Acknowledgements . iv

Table of Contents . vii

List of Tables . xiv

List of Figures . xix

I Introduction and Background Overview 1

1 Introduction 2

2 Background on Deep Learning 7

2.1 Chapter Outline . 8

2.2 High Level Considerations for Deep Learning 10

2.2.1 Templates for Deep Learning in Scientific Settings 10

2.2.2 Deep Learning Workflow 12

2.2.3 Deep Learning or Not? . 14

2.3 Deep Learning Libraries and Resources 17

2.4 Standard Neural Network Models and Tasks 21

2.4.1 Supervised Learning . 21

2.4.2 Multilayer Perceptrons . 23

2.4.3 Convolutional Neural Networks 23

2.4.4 Graph Neural Networks . 32

2.4.5 Neural Networks for Sequence Data 34

2.4.6 Section Summary . 43

2.5 Key (Supervised Learning) Methods 44

2.5.1 Transfer Learning . 45

2.5.2 Domain Adaptation . 47

2.5.3 Multitask Learning . 48

2.5.4 Weak Supervision (Distant Supervision) 49

2.5.5 Section Summary . 50

vii

2.6 Interpretability, Model Inspection and Representation Analysis . 51

2.6.1 Feature Attribution and Per Example Interpretability . . . 53

2.6.2 Model Inspection and Representational Analysis 55

2.6.3 Technical References . 59

2.7 Doing More with Less Data . 59

2.7.1 Self-Supervised Learning 60

2.7.2 Semi-Supervised Learning 65

2.7.3 Data Augmentation . 68

2.7.4 Data (Image) Denoising . 71

2.8 Advanced Deep Learning Methods 71

2.8.1 Generative Models . 72

2.8.2 Reinforcement Learning . 76

2.9 Implementation Tips . 78

2.10 Conclusion . 82

II Insights on Neural Network Hidden Representations 83

3 Quantitative Techniques for Insights on Deep Representations 84

3.1 Overview of SVCCA and Analysis Insights 84

3.2 Measuring Representations in Neural Networks 86

3.2.1 Distributed Representations 89

3.3 Scaling SVCCA for Convolutional Layers 92

3.3.1 Scaling SVCCA with Discrete Fourier Transforms 93

3.4 Applications of SVCCA . 95

3.4.1 Learning Dynamics with SVCCA 95

3.4.2 Freeze Training . 96

3.4.3 Interpreting Representations: when are classes learned? . 97

3.4.4 Other Applications: Cross Model Comparison and com-
pression . 99

3.5 Chapter Summary . 99

4 Improving Robustness of Representation Analysis and Applications

viii

to Generalization 101

4.1 Canonical Correlation Analysis on Neural Network Representations101

4.1.1 Mathematical Details of Canonical Correlation 102

4.1.2 Beyond Mean CCA Similarity 105

4.2 Using CCA to measure similarity of converged solutions 108

4.2.1 Generalizing networks converge to more similar solutions
than memorizing networks 108

4.2.2 Wider networks converge to more similar solutions 111

4.2.3 Across many initializations and learning rates, networks
converge to discriminable clusters of solutions 113

4.3 CCA on Recurrent Neural Networks 114

4.3.1 Learning Dynamics Through Training Time 115

4.4 Chapter Discussion and Future Directions 116

III Informing Algorithms for Efficient Learning 119

5 Rapid Learning or Feature Reuse? Investigating Few-Shot Learning
via Meta-Learning 120

5.1 Related Work . 122

5.2 MAML, Rapid Learning, and Feature Reuse 123

5.2.1 Overview of MAML . 124

5.2.2 Rapid Learning or Feature Reuse? 126

5.3 The ANIL (Almost No Inner Loop) Algorithm 130

5.4 Contributions of the Network Head and Body 134

5.4.1 The Head at Test Time and the NIL (No Inner Loop) Algo-
rithm . 135

5.4.2 Training Regimes for the Network Body 136

5.5 Feature Reuse in Other Meta-Learning Algorithms 137

5.5.1 Optimization and Model Based meta-learning 138

5.6 Chapter Summary . 140

6 Understanding Transfer Learning with Applications to Medical Imag-
ing 141

ix

6.1 Datasets . 144

6.2 Models and Performance Evaluation of Transfer Learning 145

6.2.1 Description of Models . 146

6.2.2 Results . 146

6.2.3 The Very Small Data Regime 149

6.3 Representational Analysis of the Effects of Transfer 149

6.4 Convergence: Feature Independent Benefits and Weight Transfusion155

6.5 Chapter Summary and Discussion 159

IV Human-AI Collaboration 161

7 Direct Uncertainty Prediction for Medical Second Opinions 162

7.1 The Doctor Disagreement Problem and Overview of Results . . . 162

7.2 Direct Uncertainty Prediction . 165

7.2.1 Toy Example on Mixture of Gaussians 169

7.2.2 Example on SVHN and CIFAR-10 171

7.3 Related Work . 172

7.4 Doctor Disagreements in DR . 173

7.4.1 Task Setup . 174

7.4.2 Models and First Experimental Results 176

7.5 Predicting Disagreement with Consensus: Adjudicated Evaluation 178

7.5.1 Ranking Evaluation . 181

7.6 Chapter Discussion . 183

8 The Algorithmic Automation Problem: Triage, Prediction and Human
Effort 185

8.1 General Framework . 188

8.1.1 Automation involving Algorithms and Humans 190

8.1.2 Heuristics for Automation 192

8.1.3 Overview of Results . 194

8.2 Medical Preliminaries, Data and Experimental Setup 196

8.2.1 Data . 197

x

8.2.2 A Decision Making Algorithm for Diabetic Retinopathy . 198

8.2.3 Evaluation . 199

8.2.4 Aggregation and Thresholding 200

8.3 The Triage Problem and Human Effort Reallocation 201

8.3.1 Per Instance Error Diversity of Humans and Algorithms . 201

8.3.2 Performing Triage and Reallocating Human Effort 204

8.3.3 Differential Costs and Zero-Error Subsets 209

8.4 Related Work . 210

8.5 Discussion . 211

V Conclusion and Future Directions 213

9 Conclusion and Future Directions 214

A Chapter 3 Appendix 217

A.1 Mathematical details of CCA and SVCCA 217

A.2 Additional Proofs and Figures from Section 3.2.1 218

A.3 Proof of Theorem 1 . 220

A.3.1 Proof of theorem 3 . 222

A.3.2 Proof of theorem 4 . 224

A.3.3 Proof of Theorem 2 . 225

A.3.4 Proof of Theorem 1 . 226

A.3.5 Computational Gains . 227

A.4 Per Layer Learning Dynamics Plots from Section 3.4.1 227

A.5 Additional Figure from Section 3.4.4 228

A.6 Experiment from Section 3.4.4 . 228

B Appendix to PWCCA and Generalization 230

B.0.1 Performance Plots for Models 230

B.0.2 Additional reduction methods for CCA 230

B.0.3 Representation Dynamics in RNNs Through Sequence
(Time) Steps . 231

xi

B.0.4 Experimental details . 235

B.0.5 Additional control experiments 236

C Chapter 5 Appendix 241

C.1 Few-Shot Image Classification Datasets and Experimental Setups 241

C.2 Additional Details and Results: Freezing and Representational
Similarity . 242

C.2.1 Experimental Details . 242

C.2.2 Details of Representational Similarity 243

C.2.3 Similarity Before and After Inner Loop with Euclidean
Distance . 244

C.2.4 CCA Similarity Across Random Seeds 244

C.2.5 MiniImageNet-5way-1shot Freezing and CCA Over Training247

C.3 ANIL Algorithm: More Details . 248

C.3.1 An Example of the ANIL Update 248

C.3.2 ANIL Learns Almost Identically to MAML 250

C.3.3 ANIL and MAML Learn Similar Representations 252

C.3.4 ANIL Implementation Details 253

C.3.5 ANIL is Computationally Simpler Than MAML 254

C.4 Further Results on the Network Head and Body 255

C.4.1 Training Regimes for the Network Body 255

C.4.2 Representational Analysis of Different Training Regimes . 257

D Chapter 6 Appendix 259

D.1 Details on Datasets, Models and Hyperparameters 259

D.2 Additional Dataset Size Results . 261

D.3 CCA Details . 262

D.4 Additional Results from Representation Analysis 263

D.5 The Fixed Feature Extraction Setting 266

D.6 Additional Results on Feature Independent Benefits and Weight
Transfusions . 269

D.6.1 Batch Normalization Layers 269

xii

D.6.2 Mean Var Init vs Using Knowledge of the Full Empirical
ImageNet Weight Distribution 272

D.6.3 Synthetic Gabor Filters . 273

E Chapter 7 Appendix 276

E.1 Proofs of Direct Uncertainty Prediction Results 276

E.2 Mixture of Gaussians Setting . 277

E.3 SVHN and CIFAR-10 Setting . 278

E.4 Details of DUP in the Medical Domain 279

E.5 Additional Results: Entropy, Finite Sample Behavior and Conver-
gence Analysis . 283

E.6 Background on the Wasserstein Distance 285

F Chapter 8 Appendix 287

F.1 Training Data and Models Details 287

F.2 Computing Pr [Mi] . 288

F.3 Triage and Allocation Algorithm 289

F.3.1 Results on other Thresholds 290

F.4 Triage and Human Effort Reallocation with Model Grades 292

F.5 Results on Additional Holdout Dataset 293

Bibliography 297

xiii

LIST OF TABLES

5.1 Freezing successive layers (preventing inner loop adaptation) does
not affect accuracy, supporting feature reuse. To test the amount of
feature reuse happening in the inner loop adaptation, we test the ac-
curacy of the model when we freeze (prevent inner loop adaptation) a
contiguous block of layers at test time. We find that freezing even all
four convolutional layers of the network (all layers except the network
head) hardly affects accuracy. This strongly supports the feature reuse
hypothesis: layers don’t have to change rapidly at adaptation time; they
already contain good features from the meta-initialization. 127

5.2 ANIL matches the performance of MAML on few-shot image classi-
fication and RL. On benchmark few-shot classification tasks MAML
and ANIL have comparable accuracy, and also comparable average
return (the higher the better) on standard RL tasks [76]. 131

5.3 MAML and ANIL models learn comparable representations. Com-
paring CCA/CKA similarity scores of the of MAML-ANIL representa-
tions (averaged over network body), and MAML-MAML and ANIL-
ANIL similarity scores (across different random seeds) shows algo-
rithmic differences between MAML/ANIL does not result in vastly
different types of features learned. 134

5.4 NIL algorithm performs as well as MAML and ANIL on few-shot
image classification. Performance of MAML, ANIL, and NIL on few-
shot image classification benchmarks. We see that with no test-time
inner loop, and just learned features, NIL performs comparably to
MAML and ANIL, indicating the strength of the learned features, and
the relative lack of importance of the head at test time. 136

5.5 MAML/ANIL training leads to superior features learned, supporting
importance of head at training. Training with MAML/ANIL leads
to superior performance over other methods which do not have task
specific heads, supporting the importance of the head at training. . . . 138

6.1 Transfer learning and random initialization perform comparably
across both standard ImageNet architectures and simple, lightweight
CNNs for AUCs from diagnosing moderate DR. Both sets of models
also have similar AUCs, despite significant differences in size and
complexity. Model performance on DR diagnosis is also not closely cor-
related with ImageNet performance, with the small models performing
poorly on ImageNet but very comparably on the medical task. 147

xiv

6.2 Transfer learning provides mixed performance gains on chest x-rays.
Performances (AUC%) of diagnosing different pathologies on the CheX-
pert dataset. Again we see that transfer learning does not help signifi-
cantly, and much smaller models performing comparably. 148

6.3 Benefits of transfer learning in the small data regime are largely due
to architecture size. AUCs when training on the Retina task with only
5000 datapoints. We see a bigger gap between random initialization
and transfer learning for Resnet (a large model), but not for the smaller
CBR models. 149

7.1 DUP and UVC trained to predict disagreement on mixtures of Gaus-
sians. We train DUP and UVC models on different mixtures of Gaus-
sians, with(nd,mG) denoting a mixture of m Gaussians in m dimensions.
Results are in percentage AUC over 3 repeats. The means of the Gaus-
sians are drawn iid from a multivariate normal distribution (full setup
in Appendix.) We see that the DUP model performs much better than
the UVC model at identifying datapoints with high disagreement in the
labels. 170

7.2 DUP and UVC trained to predict label disagreement corresponding
to image blurring on SVHN and CIFAR-10. DUP outperforms UVC
on predicting label disagreement on SVHN and CIFAR-10, where the
labels are drawn from a noisy distribution that varies depending on
how much blurring the source image has been subjected to. Full details
in Appendix. 172

7.3 Performance (percentage AUC) averaged over three runs for UVC
and DUPs on Variance Prediction and Disagreement Prediction tasks.
The UVC baselines, which first train a classifier on the empirical grade
histogram, are denoted Histogram-. DUPs are trained on either T (disagree)

train
or T (var)

train , and denoted Disagree-, Variance- respectively. The top two
sets of rows shows the performance of the baseline (and a strengthened
baseline Histogram-PC using Prelogit embeddings and Calibration)
compared to Variance and Disagree DUPs on the (1) Variance Predic-
tion task (evaluation on T (var)

test) and (2) Disagreement Prediction task
(evaluation on T (disagree)

test). We see that in both of these settings, the DUPs
perform better than the baselines. Additionally, the third set of rows
shows tests a Variance DUP on the disagreement task, and vice versa
for the Disagreement DUP. We see that both of these also perform better
than the baselines. 173

xv

7.4 Evaluating models (percentage AUC) on predicting disagreement be-
tween an average individual doctor grade and the adjudicated grade.
We evaluate our models’s performance using multiple different ag-
gregation metrics (majority, median, binarized non-referable/referable
median) as well as special cases of interest (no DR according to majority,
no DR according to median). We observe that all direct uncertainty
models (Variance-, Disagree-) outperform all classifier-based models
(Histogram-) on all tasks. 179

7.5 Ranking evaluation of models uncertainty scores using Spearman’s
rank correlation. In the top set of rows, we compare the ranking in-
duced by the model uncertainty scores to the (ground truth) ranking
induced by the Wasserstein distance between the empirical grade his-
togram and the adjudicated grade. We use three different metrics for
evaluating Wasserstein distance: absolute value distance, 2-Wasserstein
and Binary agree/disagree (more details in Appendix E.6.) Again, we
see that all DUPs outperform all baselines on all metrics. The second set
of rows provides another way to interpret these results. We subsample
n doctors to create a new subsampled empirical grade histogram, and
compare the ranking induced by the Wasserstein distance between this
and the adjudicated grade to the ground truth ranking. We can thus say
that the average DUP ranking corresponds to having 5 doctor grades,
and the average UVC ranking corresponds to 4 doctor grades. 184

App.1ANIL offers significant computational speedup over MAML, during
both training and inference. Table comparing execution times and
speedups of MAML, First Order MAML, and ANIL during training
(above) and inference (below) on MiniImageNet domains. Speedup is
calculated relative to MAML’s execution time. We see that ANIL offers
noticeable speedup over MAML, as a result of removing the inner loop
almost completely. This permits faster training and inference. 255

App.2Test time performance is dominated by features learned, with no dif-
ference between NIL/MAML heads. We see identical performances of
MAML/NIL heads at test time, indicating that MAML/ANIL training
leads to better learned features. 257

App.3MAML training most closely resembles multiclass pretraining, as il-
lustrated by CCA and CKA similarities. On analyzing the CCA and
CKA similarities between different baseline models and MAML (com-
paring across different tasks and seeds), we see that multiclass pre-
training results in features most similar to MAML training. Multitask
pretraining differs quite significantly from MAML-learned features,
potentially due to the alignment problem. 258

xvi

App.1Additional performance results when varying initialization and the
dataset size on the Retina task. For Resnet50, we show performances
when training on very small amounts of data. We see that even fine-
tuning (with early stopping) on 5k datapoints beats the results from
performing fixed feature extraction, Figure App.4, suggesting finetun-
ing should always be preferred. For 5k, 10k datapoints, we see a larger
gap between transfer learning and random init (closed by 50k data-
points) but this is likely due to the enormous size of the model (typically
trained on 1 million datapoints) compared to the dataset size. This
is supported by evaluating the effect of transfer on CBR-LargeT and
CBR-LargeW, where transfer again does not help much. (These are one
third the size of Resnet50, and we expect the gains of transfer to be even
more minimal for CBR-Small and CBR-Tiny.) We also show results for
using the MeanVar init, and see some gains in performance for the very
small data setting. We also see a small gain on 5k datapoints when just
reusing the conv1 weights for Resnet50. 261

App.2Representational comparisons between trained ImageNet models
with different seeds highlight the variation of behavior in higher
and lower layers, and differences between larger and smaller mod-
els. We compute CCA similarity between representations at different
layers when training from different random seeds with (i) (the same)
pretrained weights (ii) different random inits, for Resnet and CBR-Small.
The results support the conclusions of the main text. For Resnet50, in
the lowest layers such as Conv1 and Block1, we see that representations
learned when using (the same) pretrained weights are much more sim-
ilar to each other (diff 0.2 in CCA score) than representations learned
from different random initializations. This ∼ 0.2 difference is also much
higher than (somewhat) corresponding differences in CBR-Small, for
Pool1, Pool2. Actually, as Resnet50 is much deeper, the large difference
in Block1 is very striking. (Block 1 alone contains much more layers than
all of CBR-Small.) By Block3 and Block4 however, the CCA similarity
difference between pretrained representations and those from random
initialization is much smaller, and slightly lower than the differences
for Pool3, Pool4 in CBR-Small, suggesting that pretrained weights are
not having much of a difference on the kinds of functions learned. For
CBR-Small, we also see that pretrained weights result in larger differ-
ences between the representations in the lower layers, but these become
much smaller in the higher layers. We also observe that representa-
tions in CBR-Small trained from random initialization (especially in the
lower layers e.g. Pool1) are more similar to each other than in Resnet50,
suggesting things move more. 263

xvii

App.1Using soft targets for disagreement prediction does not help in per-
formance (AUC). Holdout AUC column corresponds to Disagreement
Prediction Performance in Table 7.3, other columns refer to Table 7.4 in
main text. 281

App.2Additional results from table 7.3. 282

App.3DUP and UVC models trained with entropy as a target function.
Again, we see that the DUP model outperforms the UVC model. 284

xviii

LIST OF FIGURES

2.1 Schematic of a typical deep learning workflow. A typical develop-
ment process for deep learning applications can be viewed as consisting
of three sequential stages (i) data related steps (ii) the learning compo-
nent (iii) validation and analysis. Each one of these stages has several
substeps and techniques associated with it, also depicted in the figure.
In the survey we will overview most techniques in the learning compo-
nent, as well as some techniques in the data and validation stages. Note
that while a natural sequence is to first complete steps in the data stage,
followed by learning and then validation, standard development will
likely result in multiple different iterations where the techniques used
or choices made in one stage are revisited based off of results of a later
stage. 12

2.2 The Supervised Learning process for training neural networks. The
figure illustrates the supervised learning process for neural networks.
Data instances (in this case images) and corresponding labels are col-
lected. During the training step, the parameters of the neural network
are optimized so that when input a data instance, the neural network
outputs the corresponding label. During evaluation, the neural network
is given unseen data instances as input, and if trained successfully, will
output a meaningful label (prediction). 22

2.3 Differences between Image Classification, Object Detection, Seman-
tic Segmentation and Instance Segmentation tasks. Image source [2]
The figure illustrates the differences between classification, object detec-
tion, semantic segmentation and instance segmentation. In classification,
the whole image gets a single label (balloons), while in object detection,
each balloon is also localized with a bounding box. In semantic segmen-
tation, all the pixels corresponding to balloon are identified, while in
instance segmentation, each individual balloon is identified separately. 25

2.4 Pose Estimation. Image source [300] The task of pose estimation,
specifically multi-person 2D (human) pose-estimation is depicted in
the figure. The neural network model predicts the positions of the
main joints (keypoints), which are combined with a body model to get
the stick-figure like approximations of pose overlaid on the multiple
humans in the image. Variants of these techniques have been used to
study animal behaviors in scientific settings. 31

xix

2.5 Illustration of the Sequence to Sequence prediction task. Image
source [369] The figure shows an illustration of a Sequence to Sequence
task, translating an input sentence (sequence of tokens) in English to
an output sentence in German. Note the encoder-decoder structure
of the underlying neural network, with the encoder taking in the in-
put, and the decoder generating the output, informed by the encoder
representations and the previously generated output tokens. In this
figure, the input tokens are fed in one by one, and the output is also
generated one at a time, which is the paradigm when using Recurrent
Neural Networks as the underlying model. With Transformer models,
which are now extremely popular for sequence to sequence tasks, the
sequence is input all at once, significantly speeding up use. 36

2.6 Diagram of a Recurrent Neural Network model, specifically a LSTM
(Long-Short Term Network). Image source [229] The figure illustrates
an LSTM network, a type of Recurrent Neural Network. We see that
the input xt at each timestep also inform the internal network state in
the next timestep (hence a recurrent neural network) through a gating
mechanism. This gating mechanism is called an LSTM, and consists of
sigmoid and tanh functions, which transform and recombine the input
for an updated internal state, and also emit an output. The mechanics
of this gating process are shown in the middle cell of the figure. 38

2.7 Image of a couple of layers from a Transformer network. Image
source [8] The figure depicts the core sequence of layers that are funda-
mental to Transformer neural networks, a self-attention layer (sometimes
called a self-attention head) followed by fully connected layers. Note
that when working with sequence data, transformers take the entire
input sequence all at once, along with positional information (in this
case the input sequence being "Thinking Machines".) 41

2.8 The Transfer Learning process for deep neural networks. Transfer
learning is a two step process for training a deep neural network. In-
stead of intializing parameters randomly and directly training on the
target task, we first perform a pretraining step, on some diverse, generic
task. This results in the neural network parameters converging to a
set of values, known as the pretrained weights. If the pretraining task is
diverse enough, these pretrained weights will contain useful features
that can be leveraged to learn the target task more efficiently. Starting
from the pretrained weights, we then train the network on the target
task, known as finetuning, giving us the final model. 45

xx

2.9 The output of SmoothGrad, a type of saliency map. Image source
[294] The figure shows the original input image (left), raw gradients
(middle), which are often too noisy for reliable feature attributions, and
SmoothGrad (right), a type of saliency map that averages over pertur-
bations to produce a more coherent feature attribution visualization the
input. In particular, we can clearly see that the monument in the picture
is important for the model output. 53

2.10 Visualization of the kinds of features hidden neurons have learned
to detect. Image source [231] This figure, from [231], illustrates the
result of optimizing inputs to show what features hidden neurons have
learned to recognize. In this example, the hidden neuron has learned to
detect (especially) soccer balls, tennis balls, baseballs, and even the legs
of soccer players. 56

2.11 Clustering neural network hidden representations to reveal linguis-
tic structures. Image source [169] In work on analyzing multilingual
translation systems [169], representational analysis techniques are used
to compute similarity of neural network (Transformer) hidden represen-
tations across different languages. Performing clustering on the result
reveals grouping of different language representations (each language a
point on the plot) according to language families, which affect linguistic
structure. Importantly, this analysis uses the neural network to identify
key properties of the underlying data, a mode of investigation that
might be very useful in scientific domains. 57

2.12 Training neural networks with Self-Supervision. The figure illus-
trates one example of a self-supervision setup. In self-supervision,
we typically have a collection of unlabelled data instances, in this case
images. We define a pretext task, that will automatically generate la-
bels for the data instances. In this case, the pretext task is rotation —
we randomly rotate the images by some amount and label them by
the degree of rotation. During training, the neural network is given
this rotated image and must predict the degree of rotation. Doing so
also requires the neural network learn useful hidden representations of
the image data in general, so after training with self-supervision, this
neural network can then be successfully and efficiently finetuned on a
downstream task. 60

2.13 An illustration of the Mixup data augmentation technique. Image
source [54] The figure provides an example of the Mixup data augmen-
tation method — an image of a cat and an image of a dog are linearly
combined, with 0.4 weight on the cat and 0.6 weight on the dog, to give
a new input image shown in the bottom with a smoothed label of 0.4
weight on cat and 0.6 weight on dog. Mixup has been a very popular
and successful data augmentation method for image tasks. 69

xxi

2.14 Human faces generated from scratch by StyleGAN2. Image source
[144] The figure shows multiple human face samples from StyleGAN2
[144]. While perfectly modelling and capture full diversity of complex
data distributions like human faces remains challenging, the quality
and fidelity of samples from recent generative models is very high. . . 73

3.1 To demonstrate SVCCA, we consider a toy regression task (regression
target as in Figure 3.3). (a) We train two networks with four fully
connected hidden layers starting from different random initializations,
and examine the representation learned by the penultimate (shaded)
layer in each network. (b) The neurons with the highest activations
in net 1 (maroon) and in net 2 (green). The x-axis indexes over the
dataset: in our formulation, the representation of a neuron is simply its
value over a dataset. (c) The SVD directions — i.e. the directions of
maximal variance — for each network. (d) The top SVCCA directions.
We see that each pair of maroon/green lines (starting from the top) are
almost visually identical (up to a sign). Thus, although looking at just
neurons (b) seems to indicate that the networks learn very different
representations, looking at the SVCCA subspace (d) shows that the
information in the representations are (up to a sign) nearly identical. . 86

3.2 Demonstration of (a) disproportionate importance of SVCCA directions,
and (b) distributed nature of some of these directions. For both panes,
we first find the top k SVCCA directions by training two conv nets on
CIFAR-10 and comparing corresponding layers. (a) We project the out-
put of the top three layers, pool1, fc1, fc2, onto this top-k subspace. We
see accuracy rises rapidly with increasing k, with even k � num neurons
giving reasonable performance, with no retraining. Baselines of random
k neuron subspaces and max activation neurons require larger k to per-
form as well. (b): after projecting onto top k subspace (like left), dotted
lines then project again onto m neurons, chosen to correspond highly to
the top k-SVCCA subspace. Many more neurons are needed than k for
better performance, suggesting distributedness of SVCCA directions. . 90

3.3 The effect on the output of a latent representation being projected onto
top SVCCA directions in the toy regression task. Representations of the
penultimate layer are projected onto 2, 6, 15, 30 top SVCCA directions
(from second pane). By 30, the output looks very similar to the full 200
neuron output (left). 92

xxii

3.4 Learning dynamics plots for conv (top) and res (bottom) nets trained
on CIFAR-10. Each pane is a matrix of size layers × layers, with each
entry showing the SVCCA similarity ρ̄ between the two layers. Note
that learning broadly happens ‘bottom up’ – layers closer to the input
seem to solidify into their final representations with the exception of
the very top layers. Per layer plots are included in the Appendix. Other
patterns are also visible – batch norm layers maintain nearly perfect
similarity to the layer preceding them due to scaling invariance (with
a slight reduction since batch norm changes the SVD directions which
capture 99% of the variance). In the resnet plot, we see a stripe like
pattern due to skip connections inducing high similarities to previous
layers. 96

3.5 Freeze Training reduces training cost and improves generalization. We
apply Freeze Training to a convolutional network on CIFAR-10 and
a residual network on CIFAR-10. As shown by the grey dotted lines
(which indicate the timestep at which another layer is frozen), both
networks have a ‘linear’ freezing regime: for the convolutional network,
we freeze individual layers at evenly spaced timesteps throughout
training. For the residual network, we freeze entire residual blocks at
each freeze step. The curves were averaged over ten runs. 97

3.6 We plot the CCA similarity using the Discrete Fourier Transform be-
tween the logits of five classes and layers in the Imagenet Resnet. The
classes are firetruck and two pairs of dog breeds (terriers and husky like
dogs: husky and eskimo dog) that are chosen to be similar to each other.
These semantic properties are captured in CCA similarity, where we see
that the line corresponding to firetruck is clearly distinct from the two
pairs of dog breeds, and the two lines in each pair are both very close to
each other, reflecting the fact that each pair consists of visually similar
looking images. Firetruck also appears to be easier for the network to
learn, with greater sensitivity displayed much sooner. 98

3.7 We plot the CCA similarity using the Discrete Fourier Transform be-
tween convolutional layers of a Resnet and Convnet trained on CIFAR-
10. We find that the lower layers of both models are noticeably similar
to each other, and get progressively less similar as we compare higher
layers. Note that the highest layers of the resnet are least similar to the
lower layers of the convnet. 98

xxiii

4.1 CCA distinguishes between stable and unstable parts of the repre-
sentation over the course of training. Sorted CCA coefficients (ρ(i)

t)
comparing representations between layer L at times t through training
with its representation at the final timestep T for CNNs trained on
CIFAR-10 (a), and RNNs trained on PTB (b) and WikiText-2 (c). For all
of these networks, at time t0 < T (indicated in title), the performance
converges to match final performance (see Figure App.1). However,
many ρ(i)

t are unconverged, corresponding to unnecessary parts of the
representation (noise). To distinguish between the signal and noise
portions of the representation, we apply CCA between L at timestep
tearly early in training, and L at timestep T/2 to get ρT/2. We take the 100
top converged vectors (according to ρT/2) to form S , and the 100 least
converged vectors to form B. We then compute CCA similarity between
S and L at time t > tearly, and similarly for B. S remains stable through
training (signal), while B rapidly becomes uncorrelated (d-f). Note that
the sudden spike at T/2 in the unstable representation is because it is
chosen to be the least correlated with step T/2. 104

4.2 Projection weighted (PWCCA) vs. SVCCA vs. unweighted mean Un-
weighted mean (blue) and projection weighted mean (red) were used to
compare synthetic ground truth signal and uncommon (noise) structure,
each of fixed dimensionality. As the signal to noise ratio decreases, the
unweighted mean underestimates the shared structure, while the pro-
jection weighted mean remains largely robust. SVCCA performs better
than the unweighted mean but less well than the projection weighting. 106

4.3 Generalizing networks converge to more similar solutions than
memorizing networks. Groups of 5 networks were trained on CIFAR-
10 with either true labels (generalizing) or a fixed random permutation
of the labels (memorizing). The pairwise CCA distance was then com-
pared within each group and between generalizing and memorizing
networks (inter) for each layer, based on the training data, and the
projection weighted CCA coefficient (with thresholding to remove low
variance noise.) While both categories converged to similar solutions in
early layers, likely reflecting convergent edge detectors, etc., generaliz-
ing networks converge to significantly more similar solutions in later
layers. At the softmax, sets of both generalizing and memorizing net-
works converged to nearly identical solutions, as all networks achieved
near-zero training loss. Error bars represent mean ± std weighted mean
CCA distance across pairwise comparisons. 109

xxiv

4.4 Larger networks converge to more similar solutions. Groups of 5
networks with different random initializations were trained on CIFAR-
10. Pairwise CCA distance was computed for members of each group.
Groups of larger networks converged to more similar solutions than
groups of smaller networks (a). Test accuracy was highly correlated
with degree of convergent similarity, as measured by CCA distance (b). 112

4.5 CCA reveals clusters of converged solutions across networks with
different random initializations and learning rates. 200 networks
with identical topology and varying learning rates were trained on
CIFAR-10. CCA distance between the eighth layer of each pair of net-
works was computed, revealing five distinct subgroups of networks
(a). These five subgroups align almost perfectly with the subgroups
discovered in [221] (b; colors correspond to bars in a), despite the fact
that the clusters in [221] were generated using robustness to cumulative
ablation, an entirely separate metric. 113

4.6 RNNs exhibit bottom-up learning dynamics. To test whether layers
converge to their final representation over the course of training with
a particular structure, we compared each layer’s representation over
the course of training to its final representation using CCA. In shal-
low RNNs trained on PTB (a), and WikiText-2 (b), we observed a clear
bottom-up convergence pattern, in which early layers converge to their
final representation before later layers. In deeper RNNs trained on
WikiText-2, we observed a similar pattern (c). Importantly, the weighted
mean reveals this effect much more accurately than the unweighted
mean, which is also supported by control experiments (Figure App.8)
(d), revealing the importance of appropriate weighting of CCA coeffi-
cients. 116

5.1 Rapid learning and feature reuse paradigms. In Rapid Learning, outer
loop training leads to a parameter setting that is well-conditioned for
fast learning, and inner loop updates result in significant task special-
ization. In Feature Reuse, the outer loop leads to parameter values
corresponding to reusable features, from which the parameters do not
move significantly in the inner loop. 124

xxv

5.2 High CCA/CKA similarity between representations before and after
adaptation for all layers except the head. We compute CCA/CKA
similarity between the representation of a layer before the inner loop
adaptation and after adaptation. We observe that for all layers except the
head, the CCA/CKA similarity is almost 1, indicating perfect similarity.
This suggests that these layers do not change much during adaptation,
but mostly perform feature reuse. Note that there is a slight dip in
similarity in the higher conv layers (e.g. conv3, conv4); this is likely
because the slight representational differences in conv1, conv2 have a
compounding effect on the representations of conv3, conv4. The head
of the network must change significantly during adaptation, and this is
reflected in the much lower CCA/CKA similarity. 129

5.3 Inner loop updates have little effect on learned representations from
early on in learning. Left pane: we freeze contiguous blocks of layers
(no adaptation at test time), on MiniImageNet-5way-5shot and see
almost identical performance. Right pane: representations of all layers
except the head are highly similar pre/post adaptation – i.e. features
are being reused. This is true from early (iteration 10000) in training. . 130

5.4 Schematic of MAML and ANIL algorithms. The difference between
the MAML and ANIL algorithms: in MAML (left), the inner loop (task-
specific) gradient updates are applied to all parameters θ, which are
initialized with the meta-initialization from the outer loop. In ANIL
(right), only the parameters corresponding to the network head θhead

are updated by the inner loop, during training and testing. 130

5.5 MAML and ANIL learn very similarly. Loss and accuracy
curves for MAML and ANIL on MiniImageNet-5way-5shot, il-
lustrating how MAML and ANIL behave similarly through the
training process. 133

6.1 Example images from the ImageNet, the retinal fundus photographs, and
the CheXpert datasets, respectively. The fundus photographs and chest
x-rays have much higher resolution than the ImageNet images, and are
classified by looking for small local variations in tissue. 144

xxvi

6.2 Pretrained weights give rise to different hidden representations than
training from random initialization for large models. We compute
CCA similarity scores between representations learned using pretrained
weights and those from random initialization. We do this for the top
two layers (or stages for Resnet, Inception) and average the scores,
plotting the results in orange. In blue is a baseline similarity score, for
representations trained from different random initializations. We see
that representations learned from random initialization are more similar
to each other than those learned from pretrained weights for larger
models, with less of a distinction for smaller models. 151

6.3 Per-layer CCA similarities before and after training on medical task.
For all models, we see that the lowest layers are most similar to their
initializations, and this is especially evident for Resnet50 (a large model).
We also see that feature reuse is mostly restricted to the bottom two
layers (stages for Resnet) — the only place where similarity with ini-
tialization is significantly higher for pretrained weights (grey dotted
lines shows the difference in similarity scores between pretrained and
random initialization). 153

6.4 Large models move less through training at lower layers: similarity
at initialization is highly correlated with similarity at convergence
for large models. We plot CCA similarity of Resnet (conv1) initialized
randomly and with pretrained weights at (i) initialization, against (ii)
CCA similarity of the converged representations (top row second from
left.) We also do this for two different random initializations (top row,
left). In both cases (even for random initialization), we see a surprising,
strong correlation between similarity at initialization and similarity
after convergence (R2 = 0.75, 0.84). This is not the case for the smaller
CBR-Small model, illustrating the overparametrization of Resnet for the
task. Higher must likely change much more for good task performance. 154

6.5 Visualization of conv1 filters shows the remains of initialization af-
ter training in Resnet, and the lack of and erasing of Gabor filters
in CBR-Small. We visualize the filters before and after training from
random initialization and pretrained weights for Resnet (top row) and
CBR-Small (bottom row). Comparing the similarity of (e) to (f) and (g)
to (h) shows the limited movement of Resnet through training, while
CBR-Small changes much more. We see that CBR does not learn Ga-
bor filters when trained from scratch (f), and also erases some of the
pretrained Gabors (compare (g) to (h).) 156

xxvii

6.6 Using only the scaling of the pretrained weights (Mean Var Init)
helps with convergence speed. The figures compare the standard trans-
fer learning and the Mean Var initialization scheme to training from
scratch. On both the Retina data (a-b) and the CheXpert data (c) (with
Resnet50 on the Consolidation disease), we see convergence speedups. . 156

6.7 Reusing a subset of the pretrained weights (weight transfusion), fur-
ther supports only the lowest couple of layers performing meaning-
ful feature reuse. We initialize a Resnet with a contiguous subset of
the layers using pretrained weights (weight transfusion), and the rest
randomly, and train on the Retina task. On the left, we show the conver-
gene plots when transfusing up to conv1 (just one layer), up to block 1
(conv1 and all the layers in block1), etc up to full transfer. On the right,
we plot the number of train steps taken to reach 91% AUC for different
numbers of transfused weights. Consistent with findings in Section
6.3, we observe that reusing the lowest layers leads to the greatest gain
in convergence speed. Perhaps surprisingly, just reusing conv1 gives
the greatest marginal convergence speedup, even though transfusing
weights for a block means several new layers are using pretrained weights.157

6.8 Hybrid approaches to transfer learning: reusing a subset of the
weights and slimming the remainder of the network, and using syn-
thetic Gabors for conv1. For Resnet, we look at the effect of reusing
pretrained weights up to Block2, and slimming the remainder of the
network (halving the number of channels), randomly initializing those
layers, and training end to end. This matches performance and conver-
gence of full transfer learning. We also look at initializing conv1 with
synthetic Gabor filters (so no use of pretrained weights), and the rest of
the network randomly, which performs equivalently to reusing conv1
pretrained weights. This result generalizes to different architectures, e.g.
CBR-LargeW on the right. 158

7.1 Different ways of computing an uncertainty scores. An uncertainty
score h(xi) for xi can be computed by the two step process of Uncer-
tainty via Classification: training a classifier on pairs (data instance,
empirical grade distribution from y(j)

i) (xi,pi), and then post processing
the classifier output distribution to get an uncertainty score. h(xi) can
also be learned directly on xi, i.e. Direct Uncertainty Prediction. DUP
models are trained on pairs (data instance, target uncertainty function
on empirical grade distribution), (xi,U(pi)). Theoretical and empirical
results support the greater effectiveness of Direct Uncertainty Prediction.164

xxviii

7.2 Patient cases have features resulting in higher doctor disagreement.
The two rows give example datapoints in our dataset. The patient im-
ages xi, x j are in the left column, and on the right we have the empirical
probability distribution (histogram) of the multiple individual doctor
DR grades. For the top image, all doctors agreed that the grade should
be 1, while there was a significant spread for the bottom image. When
later performing an adjudication process (Section 7.5), where doctors
discuss their initial diagnoses with each other and come to a consensus,
both patient cases were given an adjudicated DR grade of 1. 166

7.3 Labels for the adjudicated dataset A. The small, gold standard adjudi-
cated dataset A has a very different label structure to the main dataset
T . Each image has many individual doctor grades (typically more than
10 grades). These doctors also tend to be specialists, with higher rates
of agreement. Additionally, each image has a single adjudicated grade,
where three doctors first grade the image individually, and then come
together to discuss the diagnosis and finally give a single, consensus
diagnosis. 178

8.1 Example fundus photographs. Fundus photographs are images of the
back of the eye, which can be used by an opthalmologist to diagnose
patients with different kinds of eye diseases. One common such eye
disease is Diabetic Retinopathy, where high blood sugar levels cause
damage to blood vessels in the eye. 196

8.2 Diagram of Algorithm for Diagnosing Diabetic Retinopathy (DR).
The algorithm takes as input a fundus photograph, which, with doc-
tor grades as targets, is used to train a convolutional neural network
to perform 5 class classification of DR. For evaluation on an image i
the output values of the convolutional neural network on grades ≥ 3,
o3, o4, o5, are summed to give m(xi), the total output mass on a refer-
able diagnosis. m(xi) is then thresholded with qR – the threshold for a
referable diagnosis. This binary decision is output by the algorithm. . . 198

xxix

8.3 Histogram plot of Pr [Hi] − Pr [Mi] for instances i in the adjudicated
evaluation dataset. We show a histogram of probability of human
doctor error minus probability of model error over the examples in the
adjudicated dataset. The orange bars correspond to examples where
the human expert has a lower probability of error than the algorithm,
the red where the probability of error is approximately equal, and the
blue where the algorithm’s probability of error is lower than the human
expert’s. The left pane is a log plot, and the right is standard scaling
(pictured without the red bar.) While the algorithm clearly has lower
error probability than the human in more cases, there is a nontrivial
mass (5%) where the human experts have lower error probability than
the model. 202

8.4 Combing algorithmic and human effort by triaging outperforms full
automation and the equal coverage human baseline. Left column:
triage by the difference between the predicted values of Pr [Hi] and
Pr [Mi]. Right column: triage by ground truth Pr [Hi]−Pr [Mi] We order
the images by their triage scores (predicted Pr [Hi] − Pr [Mi] for the left
column and ground truth Pr [Hi] − Pr [Mi] on the right), and automate
an α fraction of them. The remaining (1 − α)N images have the human
doctor budget (N, 2N, 3N grades) allocated amongst them, according
to the equal coverage protocol. This is described in further detail in
Appendix Section F.3. The black dotted line is the performance of full
automation, and the coloured dotted lines the performance of equal
coverage for the different total number of doctor grades available. We
see that triaging and combining algorithmic and human effort performs
better than all of these baselines. Triaging by ground truth (right col-
umn) gives significant gains, and suggests that better triage prediction
is a crucial problem that merits further study. In Appendix Section F.4,
we also include results when the remaining (1 − α)N cases have the
algorithm grade available, along with the reallocated human effort. The
qualitative conclusions are identical. 206

8.5 Even triaging by algorithm uncertainty leads to gains over pure algo-
rithmic and pure human performance. Instead of the separate error
prediction algorithms, we triage by the simple algorithm uncertainty:
m(x)(1−m(x)), which acts as a proxy for algorithm error probability (and
no explicit modelling of human error probability.) The same qualita-
tive conclusions hold with this simple triage score also (purple line),
although larger gains are achieved with the separate error prediction
algorithms (blue line). These results are for N doctor grades, the same
conclusions hold for 2N, 3N grades. 208

xxx

8.6 Triage identifies large subsets of the data with zero error. We plot
the average cumulative error Merr(αN)

N , where Merr(αN) is the number of
errors made by the algorithm on the first α fraction of the N images
when triaged. We observe that triaging even by the simple uncertainty
measure, m(xi)(1 − m(xi)) (left plot), can identify a 35% fraction of data
where the algorithm makes zero errors. Using the separate error predic-
tion model from Section 8.3.2, we can improve on this, identifying 44%
of the data where the algorithm has zero errors. The plot is averaged
over three repetitions (so each repeat identified at least 35%, 44% of the
data respectively.) . 210

App.1This figure shows the ability of CCA to deal with orthogonal and scaling
transforms. In the first pane, the maroon plot shows one of the highest
activation neurons in the penultimate layer of a network trained on
CIFAR-10, with the x-axis being (ordered) image ids and the y-axis being
activation on that image. The green plots show two resulting distorted
directions after this and two of the other top activation neurons are
permuted, rotated and scaled. Pane two shows the result of applying
CCA to the distorted directions and the original signal, which succeeds
in recovering the original signal. 219

App.2This figure visualizes the covariance matrix of one of the channels
of a resnet trained on Imagenet. Black correspond to large values
and white to small values. (a) we compute the covariance without
a translation invariant dataset and without first preprocessing
the images by DFT. We see that the covariance matrix is dense.
(b) We compute the covariance after applying DFT, but without
augmenting the dataset with translations. Even without enforcing
translation invariance, we see that the covariance in the DFT basis
is approximately diagonal. (c) Same as (a), but the dataset is
augmented to be fully translation invariant. The covariance in
the pixel basis is still dense. (d) Same as (c), but with dataset
augmented to be translation invariant. The covariance matrix is
exactly diagonal for a translation invariant dataset in a DFT basis. 220

App.3Learning dynamics per layer plots for conv (left pane) and res (right
pane) nets trained on CIFAR-10. Each line plots the SVCCA similarity
of each layer with its final representation, as a function of training step,
for both the conv (left pane) and res (right pane) nets. Note the bottom
up convergence of different layers 227

xxxi

App.4Comparing the converged representations of two different ini-
tializations of the same convolutional architecture. The results
support findings in [183], where initial and final layers are found
to be similar, with middle layers differing in representation simi-
larity. 228

App.5Using SVCCA to perform model compression on the fully connected
layers in a CIFAR-10 convnet. The two gray lines indicate the original
train (top) and test (bottom) accuracy. The two sets of representations for
SVCCA are obtained through 1) two different initialization and training
of convnets on CIFAR-10 2) the layer activations and the activations of
the logits. The latter provides better results, with the final five layers:
pool1, fc1, bn3, fc2 and bn4 all being compressed to 0.35 of their original
size. 229

App.1Performance convergence for CIFAR-10 CNNs, and PTB and
WikiText-2 RNNs. 230

App.2Toy RNN examples demonstrating that CCA is comparatively rota-
tion invariant. In a toy example, vanilla RNNs were initialized with
a random rotation matrix and run 1000 times with a random starting
hidden state and no inputs. Hidden states at each timepoint were com-
pared to the final hidden state using cosine distance (a, d), Euclidean
distance (b, e), and CCA (c, f). Due to its rotation invariance, CCA
recognized all states as similar in both linear RNNs (a-c), and a blended
linear/non-linear case (d-f; ht+1 = Wrotht + α · σ(Wrandht) + b, where Wrot
is a random rotation matrix, Wrand ∼ N(0, I)), while both cosine and
Euclidean distance largely fail. Error bars represent mean ± std. 232

App.3Hidden states are nonlinearly variable over sequence timesteps. Us-
ing CCA (left), cosine distance (middle), and Euclidean distance (right),
we measured the distance between representations at sequence timestep
t and the final sequence timestep T . Interestingly, even CCA failed to
find similarity until late in the sequence, suggesting that the hidden
state varies nonlinearly in the presence of unique inputs. 233

xxxii

App.4Hidden states vary linearly in the presence of repeated inputs. To test
whether the nonlinearity in the hidden state over sequence timesteps
was due to input variability or recurrent dynamics, we measured the
CCA distance (left), cosine distance (middle), and Euclidean distance
(right) between sequence timestep t and the final sequence timestep T
in the presence of repeating inputs. Interestingly, we found that when
the repetition started after only a small set of unique inputs have been
presented (light blue lines), CCA was able to recognize that the hidden
states at each sequence timestep were highly similar. However, after
many unique inputs had been delivered, the CCA distance markedly
increased, suggesting that the nonlinearity of the recurrent dynamics is
dependent on the network’s history. 234

App.5Cosine and Euclidean distance do not reveal the difference in
converged solutions between groups of generalizing and mem-
orizing networks. Groups of 5 networks were trained on CIFAR-
10 with either true labels (generalizing) or random labels (memo-
rizing). The pairwise cosine (left) and eucldean (right) distance
was then compared among generalizing networks, memorizing
networks, and between generalizing and memorizing networks
(inter) for each layer. While its invariance to linear transforms
enabled CCA distance to reveal a difference between groups gen-
eralizing and memorizing networks in later layers (Figure 4.3),
cosine and Euclidean distance fail to detect this difference. Error
bars represent mean ± std distance across pairwise comparisons. 236

App.6Cosine and Euclidean distance do not reveal the relation-
ship between network size and similarity of converged so-
lutions. Groups of 5 networks with different random initial-
izations were trained on CIFAR-10. Each group contained fil-
ter sizes of λ[64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512] with
λ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}. Pair-
wise cosine (left) and Euclidean (right) distance was computed
for each group of networks. While CCA distance revealed that
larger networks converge to more similar solutions (Figure 4.4),
cosine and Euclidean distance fail to find this relationship. Error
bars represent mean ± std distance across pairwise comparisons. 237

xxxiii

App.7Relationship between network size and similarity of con-
verged solutions is not present at initialization. Activations
at initialization (random weights) and after training (learned
weights) were extracted from groups of 5 networks with different
random initializations from CIFAR-10 data. Each group contained
filter sizes of λ[64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512]
with λ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}.
While CCA distance decreases substantially for trained networks
(from approximately 0.47 to 0.28), CCA distance only decreased
moderately (from approximately 0.67 to 0.63) and plateaued past
approximately 1000 filters. Error bars represent mean ± std dis-
tance across pairwise comparisons. 238

App.8Controls for RNN learning dynamics with cosine and Eu-
clidean distance To test whether layers converge to their final
representation over the course of training with a particular struc-
ture, we compared each layer’s representation over the course
of training to its final representation using cosine (a, c, e) and
Euclidean distance (b, d, f). In shallow RNNs trained on PTB
(a-b), and WikiText-2 (c-d), both cosine and Euclidean distance
display properties of bottom-up convergence, albeit with substan-
tially more noise than CCA (4.6). In deeper RNNs trained on
WikiText-2, we observed a similar pattern (e-f). 239

App.9Unweighted CCA and SVCCA also finds that generalizing net-
works converge to more similar solutions than memorizing
networks, but misses several key features. While weighted
CCA (Figure 4.3), unweighted CCA (a), and SVCCA (b) reveal
the same broad pattern across generalizing and memorizing net-
works, unweighted CCA and SVCCA miss several key features.
First, unweighted CCA misses the fact that generalizing networks
become more similar to one another in the final two layers. Sec-
ond, both unweighted CCA and SVCCA overestimate the dis-
tance between networks in early layers. Error bars represent mean
± std unweighted mean CCA and unweighted mean SVCCA dis-
tance across pairwise comparisons. 240

xxxiv

App.10On test data, generalizing networks converge to similar solu-
tions at the softmax, but memorizing networks do not. Groups
of 5 networks were trained on CIFAR-10 with either true labels
(generalizing) or random labels (memorizing). The pairwise CCA
distance was then compared within each group and between gen-
eralizing and memorizing networks (inter) for each layer, based
on the test data. At the softmax, sets of generalizing networks
converged to similar (though not identical) solutions, but mem-
orizing networks did not, reflecting the diverse strategies used
by memorizing networks to memorize the training data. Error
bars represent mean ± std weighted mean CCA distance across
pairwise comparisons. 240

App.1Euclidean distance before and after finetuning for MiniImageNet.
We compute the average (across tasks) Euclidean distance between
the weights before and after inner loop adaptation, separately for dif-
ferent layers. We observe that all layers except for the final layer show
very little difference before and after inner loop adaptation, suggesting
significant feature reuse. 245

App.2Computing CCA similarity pre/post adaptation across different ran-
dom seeds further demonstrates that the inner loop doesn’t change
representations significantly. We compute CCA similarity of L1 from
seed 1 and L2 from seed 2, varying whether we take the representation
pre (before) adaptation or post (after) adaptation. To isolate the effect
of adaptation from inherent variation in the network representation
across seeds, we plot CCA similarity of of the representations before
adaptation against representations after adaptation in three different
combinations: (i) (L1 pre, L2 pre) against (L1 pre, L1 post), (ii) (L1 pre,
L2 pre) against (L1 pre, L1 post) (iii) (L1 pre, L2 pre) against (L1 post, L2

post). We do this separately across different random seeds and different
layers. Then, we compute a line of best fit, finding that in all three plots,
it is almost identical to y = x, demonstrating that the representation does
not change significantly pre/post adaptation. Furthermore a computa-
tion of the coefficient of determination R2 gives R2 ≈ 1, illustrating that
the data is well explained by this relation. In Figure App.3, we perform
this comparison with CKA, observing the same high level conclusions. 246

App.3We perform the same comparison as in Figure App.2, but with CKA
instead. There is more variation in the similarity scores, but we still see
a strong correlation between (Pre, Pre) and (Post, Post) comparisons,
showing that representations do not change significantly over the inner
loop. 247

xxxv

App.4Inner loop updates have little effect on learned representations from
early on in learning. We consider freezing and representational similar-
ity experiments for MiniImageNet-5way-1shot. We see that early on in
training (from as few as 10k iterations in), the inner loop updates have
little effect on the learned representations and features, and that remov-
ing the inner loop updates for all layers but the head have little-to-no
impact on the validation set accuracy. 248

App.5ANIL and MAML on MiniImageNet and Omniglot. Loss and accu-
racy curves for ANIL and MAML on (i) MiniImageNet-5way-1shot (ii)
MiniImageNet-5way-5shot (iii) Omniglot-20way-1shot. These illustrate
how both algorithms learn very similarly over training. 251

App.6Computing CCA similarity across different seeds of MAML and
ANIL networks suggests these representations are similar. We plot
the CCA similarity between an ANIL seed and a MAML seed, plot-
ted against (i) the MAML seed compared to a different MAML seed
(ii) the ANIL seed compared to a different ANIL seed. We observe
a strong correlation of similarity scores in both (i) and (ii). This tells
us that (i) two MAML representations vary about as much as MAML
and ANIL representations (ii) two ANIL representations vary about as
much as MAML and ANIL representations. In particular, this suggests
that MAML and ANIL learn similar features, despite having significant
algorithmic differences. 252

App.1First layer filters of CBR-Small on the CheXpert data. (a) and (c) show
the randomly initialized filters and filters initialized from a model (the
same architecture) pre-trained on ImageNet. (b) and (d) shows the final
converged filters from the two different initializations, respectively. . . 265

App.2First layer filters of Resnet-50 on the CheXpert data. (a) and (c) show
the randomly initialized filters and filters initialized from a model (the
same architecture) pre-trained on ImageNet. (b) and (d) shows the final
converged filters from the two different initializations, respectively. . . 265

App.3Larger models move less through training than smaller networks. A
schematic diagram of our intuition for optimization for larger and
smaller models. 265

xxxvi

App.4ImageNet features perform well as fixed feature extractors on the
Retina task, and are robust to coadaptation performance drops. We
initialize (i) the full architecture with ImageNet weights (yellow) (ii) up
to layer L with ImageNet weights, and the rest randomly. In both, we
keep up to layer L fixed, and only train layers L + 1 onwards. We com-
pare to a random features baseline, initializing randomly and training
layer L + 1 onwards (blue). ImageNet features perform much better as
fixed feature extractors than the random baseline (though this gap is
much closer for the CheXpert dataset, Appendix Figure App.5.) Inter-
estingly, there is no performance drop due to the coadaptation issue [360],
with partial ImageNet initialization performing equally to initialzing
with all of the ImageNet weights. 267

App.5Experiments on freezing lower layers of CBR-LargeT and a CBR-
Tiny model on the CheXpert data. After random or transfer initial-
ization, we keep up to layer L fixed, and only train layers L + 1 onwards.
ImageNet features perform better as fixed feature extractors than the
random baseline for most diseases, but the gap is much closer than for
the Retina data, Figure App.4. We again see that there is no significant
performance drop due to coadaptation challenges. 268

App.6Distribution and filter visualization of weights initialized according
to pretrained ImageNet weights, Random Init, and Mean Var Init.
The top row is a histogram of the weight values of the the first layer
of the network (Conv 1) when initialized with these three different
schemes. The bottom row shows some of the filters corresponding to the
different initializations. Only the ImageNet Init filters have pretrained
(Gabor-like) structure, as Rand Init and Mean Var weights are iid. . . . 270

App.7Comparison of convergence speed for different initialization
schemes on Retina with various model architectures. The three plots
present the results for CBR-LargeW, CBR-Small and CBR-Tiny, respec-
tively. 270

App.8Comparison of convergence speed for different initialization
schemes on the CheXpert data with Resnet-50. 271

App.9Comparing different ways of importing the weights and statistics
for batch normalization layers. The rest of the layers are initialized
according to the Mean Var scheme. The two dashed lines show the
convergence of the ImageNet init and the Random init for references.
The lines are averaged over 5 runs. 272

xxxvii

App.10Weight transfusion results on Resnet50 (from main text) and
CBR-LargeW. These broadly show the same results — reusing
pretrained weights for lowest layers give significantly larger
speedups. Because CBR-LargeW is a much smaller model, there
is slightly more change when reusing pretrained weights in high
layers, but we still see the same diminishing returns pattern. . . . 274

App.11Convergence of Slim Resnet50 from random initialization. We
include the convergence of the slim Resnet50 — where layers in
Block3, Block4 have half the number of channels, and when we
don’t use any pretrained weights. We see that it is significantly
slower than the hybrid approach in the main text. 275

App.12Synthetic Gabor filters used to initialize the first layer if neural
networks in some of the experiments in this study. The Gabor
filters are generated as grayscale images and repeated across the
RGB channels. 275

App.1Saliency maps for DUP and UVC models on the SVHN/CIFAR-10
disagreement task. The plot shows two images from the blurred CIFAR-
10 dataset and two images from the blurred SVHN dataset. The sec-
ond column is SmoothGrad applied to the UVC model, and the third
SmoothGrad applied to the DUP model. We observe that the DUP and
UVC models appear to be paying attention to different features of the
dataset. 280

App.2DUP and UVC performance during training and when varying train
data size. We study DUP (Disagree-P) and UVC (Histogram-PC) per-
formance for varying amounts of training data. We find that the gap
in performance is robust to variations in dataset size. For more than
30% of the data, performance of DUP and UVC remains relatively con-
stant, supporting the applicability of Theorem 5 in the finite data setting.
The right plot looks at performance through training, with the gap
appearing rapidly early in training, and slowly widening. 284

App.1Triage and human expert effort reallocation for different thresholds:
0.3 top row, 0.4 bottom row. We plot the same results as in Figure 8.4
in the main text, but for different thresholds — 0.3, 0.4 — for aggregation.291

App.2Triage for Zero Error subsets with thresholds 0.3 (top) and 0.4 (bot-
tom) for aggregation. The size of the zero error subsets remain the
same, showing that the choice of threshold does not affect the identifi-
cation of these subsets. 292

xxxviii

App.3Effort reallocation results with the algorithm’s grade being available
for all cases. Here we assume that the algorithm’s grade is available
for all the patient cases. We see that the same qualitative conclusions
hold – a mix of automation and human effort outperforming the pure
algorithm/human expert. 293

App.4Histogram plot of Pr [Hi] − Pr [Mi] for instances i on the additional
holdout evaluation dataset. Compare to Figure 8.3 in the main text.
We see a diversity of values across different instances. 294

App.5Triaging to combine human effort and algorithm decisions outper-
forms full automation and the equal coverage protocols, compare to
Figure 8.4 in the main text. We perform the same experiments as in
Figure 8.4 in the main text, using the aggregated doctor grades as the
ground truth instead of the adjudicated grade. 295

App.6Proportion of data with zero errors when triaging. Compare to Figure
8.6 in the main text. The proportion of the dataset found with zero
errors is slightly lower, likely because the labels are noisier, and total
error is much higher (10% compared to 4% in the main text.) Unlike
the main text, we see that triaging by algorithmic uncertainty, left pane,
seems to perform better than triaging with a separate model. Upon
closer inspection, we find that this is because one repetition of the
separate error model makes two errors earlier on, and accounting for
this (green dotted lines) shows that the separate error model performs
comparably/slightly better. 296

xxxix

Part I

Introduction and Background

Overview

1

CHAPTER 1

INTRODUCTION

The past several years have witnessed incredible breakthroughs in many core

problems in machine learning, ranging from speech recognition [98, 233], to

complex tasks in computer vision [168, 116, 335], to central questions in natural

language, such as machine translation, question answering and dialogue [256,

239, 325, 270]. These breakthroughs have been largely driven by advances in deep

learning, with the underlying deep neural network models seeing significant

development in competition benchmarks [58, 256, 331].

Instigated by this progress, over just the past few years, there has been sub-

stantial interest in applying advances in areas such as computer vision and

natural language to specialized, often high-stakes domains such as medicine and

healthcare. Importantly, these applications consist of both research studies as

well as full deployment [316, 101, 255, 359, 10, 174].

However, to gain the full potential of these machine learning systems, and

utilise them in a safe, reliable and sustainable fashion, it is important to have

well designed models and algorithms, which are tailored to the requirements

of these specialized, high-stakes domains. Unfortunately, with the increase

in capabilities of these systems and the tasks they can address, also comes an

increase in the complexity of designing the system. Indeed, designing a new

machine learning system requires consists of making numerous specific choices

on the type of neural network model [168, 325, 117, 116], ways to preprocess,

curate and augment the data [372, 54, 363, 61], the type of optimization method

and regularization to apply [137, 154, 87] and the learning algorithm and related

2

hyperparameters [130, 367, 368].

The opacity in knowing which set of choices will lead to a robust, reliable

model poses significant challenges for potential (deployed) use-cases. For exam-

ple, a recent study [346] on a device using a deep learning model for hip fracture

detection found that the presence of surgical skin markings on the patient (evi-

dence of prior treatment for skin cancer), had a catastrophic effect on the device,

with an enormous false positive rate. Another recent paper [15] performed a

validation study on a deep neural network trained to perform hip fracture detec-

tion. When presented with a new validation dataset (from a different hospital),

the model failed to generalize. While the cause of this was at first unknown, a

careful analysis of the internal representations of the system revealed that the

choice of model and training process was leading it to overfit to confounding

attributes in the training data, causing a failure in generalization. Needless to

say, such failures cannot be afforded in these critical applications and it is vital to

develop techniques that enable their preemptive identification and resolution.

These failures also have direct ramifications for another important considera-

tion in deploying and using these systems — the ability to work effectively with

human experts. In specialized applications such as medicine, vital functions such

as navigating patient preferences, complex surgical interventions and palliative

care are performed by human experts. Such functions are not automatable, and

hence any deployed AI system must effectively support the human experts in

these roles.

These considerations lead us to the main research results presented in this

thesis. Having surveyed many of the key neural network models, tasks, al-

3

gorithms and end-to-end design process in Chapter 2, we begin in Part II by

developing quantitative techniques that can give us insights into the internals

of these complex machine learning systems, and reveal important properties in

central components of the design process. These results have been published in

[253, 220], with many followup results from the community [95, 278, 164, 169, 25].

In Part III we then use these techniques and insights to inform the design of

new algorithms for efficiently learning and training these systems, with the cor-

responding papers being [254, 250]. Finally, in Part IV, we examine how fully

trained AI systems can effectively collaborate with human experts [252, 251].

More specifically, we described earlier the numerous intricate choices in

designing a robust machine learning system, and the challenges presented by the

opacity of the process. In practice, to identify good design choices for the end to

end system, numerous such design choices are tried out [51, 308, 382], resulting

in a population of deep learning systems, which are monitored through accuracy

and loss metrics, typically all the way through the training process. However,

these accuracy and loss metrics primarily give us insights on only the output (top

layer) of the underlying neural network model, not the hidden representations,

which contain the bulk of the parameters and learning. In Part II, we address

this challenge by proposing an algorithm that can quantitatively analyze these

hidden representations. We use this algorithm to study many central components

of the design process, from understanding how hidden representations converge

through training, to model compression to properties of systems that generalize

well, and differences across varying types of neural network architectures.

Using these algorithms and informed by these insights, in Part III, we turn to

studying methods to train machine learning systems in a data efficient fashion.

4

In many specialized applications, access to enough training data can be a signifi-

cant bottleneck, as it requires human experts such as doctors to help with data

curation and labelling. We study two directions which can significantly help

data efficiency — few-shot learning and transfer learning. In few-shot learning,

the goal is to be able to learn many tasks, but with very limited data for each task.

Using the techniques introduced in Part II, we propose a new algorithm that

unifies and significantly simplifies existing approaches, and can be much more

easily scaled for use with e.g. large scale medical data. We then turn to studying

transfer learning applied to medical imaging, investigating the effectiveness of

standard neural network architectures for this new data type, as well as local-

izing feature reuse and even identifying feature independent effects of transfer

learning. These results inform new, hybrid approaches to transfer learning that

better enable design to suit needs of the domain.

Finally, in Part IV, we take fully trained AI systems in these specialized

domains (particularly medicine) and look into how these systems can work ef-

fectively with human experts. One concrete question to study is how to combine

human expert effort in (say) diagnosing conditions with automated outputs from

machine learning systems. A successful combination relies on a new prediction

problem — training the machine learning system to successfully detect human

error, or in the medical setting, doctor disagreements. Having designed a system

that can do this, we then use these predictions to guide the combination of human

expert knowledge and AI system predictions, with the hybrid outperforming

either of the entities used in isolation. This raises important points on novel ways

to evaluate our AI system when designing for deployment.

We conclude the thesis by summarizing the challenges, the presented results,

5

and discussing many rich open directions for future exploration in Part V.

6

CHAPTER 2

BACKGROUND ON DEEP LEARNING

We begin by first surveying key deep learning models, algorithms and tasks to

put both central challenges and the research results aimed at mitigating them

into broader context. In particular, this survey chapter is structured as follows:

• We overview highly diverse set of deep learning concepts, from deep neural

network models for varied data modalities (CNNs for visual data, graph

neural networks, RNNs and Transformers for sequential data) to the many

different key tasks (image segmentation, super-resolution, sequence to

sequence mappings and many others) to the multiple ways of training deep

learning systems.

• But the explanation of these techniques is relatively high level and concise,

to ensure the core ideas are accessible to a broad audience, and so that the

entire survey can be read end to end easily.

• Keeping in mind the goal of specialized applications of these techniques

in domains such as medicine, we highlight advances in (i) techniques for

interpretability and representation analysis, for going beyond predictive

accuracy and gaining insight into the design of the system and (ii) efficient

learning methods, focusing on using deep learning with less data (self-

supervision, semi-supervised learning, and others) .These are two exciting

and rapidly developing research areas.

• The survey also focuses on helping quickly ramp up implementation, and

in addition to overviews of the entire deep learning design process and a

section on implementation tips (Section 2.9), the survey has a plethora of

7

open-sourced code, research summaries and tutorial references developed

by the community throughout the text, including a full section (Section 2.3)

dedicated to this.

2.1 Chapter Outline

The subsequent sections of this chapter are structured as follows

• Section 2.2 starts with some high level considerations for using deep learn-

ing. Specifically, we first discuss some template ways in which deep learn-

ing might be applied in scientific domains, followed by a general overview

of the entire deep learning design process, and conclude with a brief dis-

cussion of other central machine learning techniques that may be better

suited to some problems. The first part may be of particular interest to

those considering scientific applications, while the latter two parts may be

of general interest.

• Section 2.3 provides references to tutorials, open-sourced code

model/algorithm implementations, and websites with research paper sum-

maries, all developed by the deep learning community. This section should

be very helpful for many readers and we encourage skimming through the

links provided.

• Section 2.4 then overviews many of the standard tasks and models in deep

learning, covering convolutional networks and their many uses, graph

neural networks, sequence models (RNNs, Transformers) and the many

associated sequence tasks.

8

• Section 2.5 looks at some key variants of the supervised learning training

process, such as transfer learning, domain adaptation and multitask learn-

ing. These are central to many successful applications of deep learning.

• Section 2.6 overviews advances in interpretability and representational

analysis, a set of techniques focused on gaining insights into the internals

of the end-to-end system: identifying important features in the data, under-

standing its effect on model outputs and discovering properties of model

hidden representations. These are very important for many scientific prob-

lems which emphasise understanding over predictive accuracy, and may

be of broader interest for e.g. aiding model debugging and preemptively

identifying failure modes.

• Section 2.7 considers ways to improve the data efficiency for developing

deep neural network models, which has been a rapidly evolving area

of research, and a core consideration for many applications, including

scientific domains. It covers the many variants of self-supervision and

semi-supervised learning, as well as data augmentation and data denoising.

• Section 2.8 provides a brief overview of more advanced deep learning

methods, specifically generative modelling and reinforcement learning.

• Section 2.9 concludes with some key implementation tips when putting

together an end-to-end deep learning system, which we encourage a quick

read through!

9

2.2 High Level Considerations for Deep Learning

In this section we first discuss some high level considerations for deep learning

techniques. We start with overviews of template ways in which deep learning

might be applied in scientific settings, followed by a discussion of the end-to-end

design process and some brief highlights of alternate machine learning methods

which may be more suited to some problems.

2.2.1 Templates for Deep Learning in Scientific Settings

What are the general ways in which we might apply deep learning techniques in

scientific settings? At a very high level, we can offer a few templates of ways in

which deep learning might be used in such problems:

(1) Prediction Problems Arguably the most straightforward way to apply deep

learning is to use it to tackle important prediction problems: mapping inputs

to predicted outputs. This predictive use case of deep learning is typically

how it is also used in core problems in computing and machine learning.

For example, the input might be a biopsy image, and the model must

output a prediction of whether the imaged tissue shows signs of cancer.

We can also think of this predictive use case as getting the model to learn a

target function, in our example, mapping from input visual features to the

cancer/no cancer output. Using deep learning in this way also encapsulates

settings where the target function is very complex, with no mathematical

closed form or logical set of rules that describe how to go from input to

10

output. For instance, we might use a deep learning model to (black-box)

simulate a complex process (e.g. climate modelling), that is very challenging

to explicitly model [145].

(2) From Predictions to Understanding One fundamental difference between

scientific questions and core machine learning problems is the emphasis

in the former on understanding the underlying mechanisms. Oftentimes,

outputting an accurate prediction alone is not enough. Instead, we want

to gain interpretable insights into what properties of the data or the data

generative process led to the observed prediction or outcome. To gain these

kinds of insights, we can turn to interpretability and representation analysis

methods in deep learning, which focus on determining how the neural

network model makes a specific prediction. There has been significant work

on both tools to understand what features of the input are most critical to

the output prediction, as well as techniques to directly analyze the hidden

representations of the neural network models, which can reveal important

properties of the underlying data.

(3) Complex Transformations of Input Data In many scientific domains, the

amount of generated data, particularly visual data (e.g. fluorescence mi-

croscopy, spatial sequencing, specimen videos [244, 141]) has grown dra-

matically, and there is an urgent need for efficient analysis and automated

processing. Deep learning techniques, which are capable of many com-

plex transformations of data, can be highly effective for such settings, for

example, using a deep neural network based segmentation model to auto-

matically identify the nuclei in images of cells, or a pose estimation system

to rapidly label behaviors seen in videos of mice for neuroscience analysis.

11

Data
Collection, Preprocessing,

Visualization, Augmentation

Learning Validation + Analysis

Collect
Raw
Data

Label
Preprocessing

and
Augmentation

Visualization Visualization
and testing

simple tasks

Model
Convolutional Net,
Transformer/RNN,
Graph Neural Net

Task
Classification, Detection
Learning Embeddings,

Method
Supervised Learning,

Self-Supervision,
Semi-Supervised, Transfer,

Multitask Learning

Performance
Test on hold out

Distribution shift?

Analysis + Interpretation
Error analysis?
Ablation Study?

Useful representations?
Bias?

Spurious Correlations?

Iterate (3)

Iterate (2)

Iterate (4)

Iterate (5)

Train
Optimizer

LR schedule
Regularize

Iterate (1)

Figure 2.1: Schematic of a typical deep learning workflow. A typical development
process for deep learning applications can be viewed as consisting of three sequential
stages (i) data related steps (ii) the learning component (iii) validation and analysis.
Each one of these stages has several substeps and techniques associated with it, also
depicted in the figure. In the survey we will overview most techniques in the learning
component, as well as some techniques in the data and validation stages. Note that while
a natural sequence is to first complete steps in the data stage, followed by learning and
then validation, standard development will likely result in multiple different iterations
where the techniques used or choices made in one stage are revisited based off of results
of a later stage.

2.2.2 Deep Learning Workflow

With these examples of templates for deep learning applications in science, we

next look at the end to end workflow for designing a deep learning system.

Figure 2.1 illustrates what a typical workflow might look like.

Having selected the overarching (predictive) problem of interest, we can

broadly think of having three stages for designing and using the deep learning

system: (i) data related steps, such as collection, labelling, preprocessing, visu-

alization, etc (ii) learning focused steps, such as choice of deep neural network

model, the task and method used to train the model (iii) validation and analysis

steps, where performance evaluations are conducted on held out data, as well as

analysis and interpretation of hidden representations and ablation studies of the

12

overall methods.

These three stages are naturally sequential. However, almost all of the time,

the first attempt at building an end-to-end deep learning system will result in

some kind of failure mode. To address these, it is important to keep in mind

the iterative nature of the design process, with results from the different stages

informing the redesign and rerunning of other stages.

Figure 2.1 provides some examples of common iterations with the backward

connecting arrows: (i) the Iterate (1) arrow, corresponding to iterations on the data

collection process, e.g. having performed some data visualization, the labelling

process for the raw instances might require adjusting — the first labelling mech-

anism might be too noisy, or not capture the objective of interest (ii) the Iterate

(2) arrow, corresponding to iterations on the learning setup, due to e.g. deciding

that a different task or method might be more appropriate, or decomposing the

learning process into multiple steps — first performing self-supervision followed

by supervised learning (iii) the Iterate (3) arrow, changing the data related steps

based off of the results of the learning step (iv) the Iterate (4) arrow, redesigning

the learning process informed by the validation results e.g. finding out the model

has overfit on the training data at validation and hence reducing training time or

using a simpler model (v) the Iterate (5) arrow, adapting the data steps based off

the validation/analysis results, e.g. finding that the model is relying on spurious

attributes of the data, and improving data collection/curation to mitigate this.

Focus of Survey and Nomenclature In this survey, we provide a comprehen-

sive overview of many of the techniques in the learning stage, along with some

techniques (e.g. data augmentation, interpretability and representation analysis,

13

Section 2.6) in the data and validation stages.

For the learning stage, we look at popular models, tasks and methods. By

models (also sometimes referred to as architecture), we mean the actual structure

of the deep neural network — how many layers, of what type, and how many

neurons, etc. By tasks, we mean the kind of prediction problem, specifically, the

type of input and output. For example, in an image classification task, the input

consists of images and the output a probability distribution over a (discrete)

set of different categories (called classes). By methods, we refer to the type of

learning process used to train the system. For example, supervised learning is a

very general learning process, consisting of the neural network being given data

instances with corresponding labels, with the labels providing supervision.

Unlike different models and tasks, methods can be subsets of other methods.

For example, self-supervision, a method where the neural network is trained on

data instances and labels, but the labels automatically created from the data

instance, can also be considered a type of supervised learning. This can be a little

confusing! But it suffices to keep in mind the general notions of models, tasks and

methods.

2.2.3 Deep Learning or Not?

As a final note before diving into the different deep learning techniques, when

formulating a problem, it is important to consider whether deep learning pro-

vides the right set of tools to solve it. The powerful underlying neural network

models offer many sophisticated functionalities, such learned complex image

14

transforms. However, in many settings, deep learning may not be the best tech-

nique to start with or best suited to the problem. Below we very briefly overview

some of the most ubiquitous machine learning methods, particularly in scientific

contexts.

Dimensionality Reduction and Clustering In scientific settings, the ultimate

goal of data analysis is often understanding — identifying the underlying mecha-

nisms that give rise to patterns in the data. When this is the goal, dimensionality

reduction, and/or clustering are simple (unsupervised) but highly effective meth-

ods to reveal hidden properties in the data. They are often very useful in the

important first step of exploring and visualizing the data (even if more complex

methods are applied later.)

Dimensionality Reduction: Dimensionality reduction methods are either linear,

relying on a linear transformation to reduce data dimensionality, or non-linear,

reducing dimensionality while approximately preserving the non-linear (man-

ifold) structure of the data. Popular linear dimensionality reduction methods

include PCA and non-negative matrix factorization, with some popular non-linear

methods including t-SNE [199] and UMAP [209]. Most dimensionality reduction

methods have high-quality implementations in packages like scikit-learn or

on github, e.g. https://github.com/oreillymedia/t-SNE-tutorial or

https://github.com/lmcinnes/umap.

Clustering: Often used in combination with dimensionality reduction, clus-

tering methods provide a powerful, unsupervised way to identify similarities

and differences across the data population. Commonly used clustering methods

include k-means (particularly the k-means++ variant), Gaussian Mixture Models

15

https://github.com/oreillymedia/t-SNE-tutorial
https://github.com/lmcinnes/umap

(GMMs), hierarchical clustering and spectral clustering. Like dimensionality re-

duction techniques, these clustering methods have robust implementations in

packages like scikit-learn.

In Section 2.6.2, we discuss how dimensionality reduction and clustering can

be used on the hidden representations of neural networks.

Linear Regression, Logistic Regression (and variants!) Arguably the most

fundamental techniques for supervised problems like classification and regression,

linear and logistic regression, and their variants (e.g. Lasso, Ridge Regression)

may be particularly useful when there is limited data, and a clear set of (possibly

preprocessed) features (such as in tabular data.) These methods also often

provide a good way to sanity check the overarching problem formulation, and

may be a good starting point to test out a very simple version of the full problem.

Due to their simplicity, linear and logistic regression are highly interpretable,

and provide straightforward ways to perform feature attribution.

Decision Trees, Random Forests and Gradient Boosting Another popular

class of methods are decision trees, random forests and gradient boosting. These

methods can also work with regression/classification tasks, and are well suited

to model non-linear relations between the input features and output predic-

tions. Random forests, which ensemble decision trees, can often be preferred

to deep learning methods in settings where the data has a low signal-to-noise

ratio. These methods can typically be less interpretable than linear/logistic

regression, but recent work [226] has looked at developing software libraries

https://github.com/interpretml/interpret to address this challenge.

16

https://github.com/interpretml/interpret

Other Methods and Resources: Both the aforementioned techniques and

many other popular methods such as graphical models, Gaussian processes,

Bayesian optimization are overviewed in detail in excellent course notes such

as University of Toronto‘s Machine Learning Course or Stanford‘s CS229,

detailed articles at https://towardsdatascience.com/ and even inter-

active textbooks such as https://d2l.ai/index.html (called Dive into

Deep Learning [369]) and https://github.com/rasbt/python-machine-

learning-book-2nd-edition.

2.3 Deep Learning Libraries and Resources

A remarkable aspect of advances in deep learning so far is the enormous number

of resources developed and shared by the community. These range from tutorials,

to overviews of research papers, to open sourced code. Throughout this survey,

we will reference some of these materials in the topic specific sections, but we

first list here a few general very useful frameworks and resources.

Software Libraries for Deep Learning: Arguably the two most popular code

libraries for deep learning are PyTorch (with a high level API called Lightning)

and TensorFlow (which also offers Keras as a high level API.) Developing and

training deep neural network models critically relies on fast, parallelized ma-

trix and tensor operations (sped up through the use of Graphical Processing

Units) and performing automatic differentiation for computing gradients and

optimization (known as autodiff.) Both PyTorch and TensorFlow offer these core

utilities, as well as many other functions. Other frameworks include Chainer,

17

http://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/
http://cs229.stanford.edu/syllabus.html
https://towardsdatascience.com/
https://d2l.ai/index.html
https://github.com/rasbt/python-machine-learning-book-2nd-edition
https://github.com/rasbt/python-machine-learning-book-2nd-edition
https://pytorch.org/
https://github.com/PyTorchLightning/pytorch-lightning
https://www.tensorflow.org/
https://keras.io/
https://chainer.org/

ONNX, MXNET and JAX. Choosing the best framework has been the source of

significant debate. For ramping up quickly, programming experiences closest to

native Python, and being able to use many existing code repositories, PyTorch

(or TensorFlow with the Keras API) may be two of the best choices.

Tutorials: (i) https://course.fast.ai/ fast.ai provides a free, coding-first

course on the most important deep learning techniques as well as an intu-

itive and easy to use code library, https://github.com/fastai/fastai, for

model design and development. (ii) https://towardsdatascience.com/

contains some fantastic tutorials on almost every deep learning topic imag-

inable, crowd sourced from many contributors. (iii) Many graduate deep

learning courses have excellent videos and lecture notes available online, such

as http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/ for

Deep Learning and Neural Networks, or the more topic specific Stanford‘s

CS224N NLP with Deep Learning. A nice collection of some of these topic

specific lectures is provided at https://github.com/Machine-Learning-

Tokyo/AI_Curriculum. There are also some basic interactive deep learn-

ing courses online, such as https://github.com/leriomaggio/deep-

learning-keras-tensorflow.

Research Overviews, Code, Discussion: (i) https://paperswithcode.com/

This excellent site keeps track of new research papers and their correspond-

ing opensourced code, trending directions and displays state of the art results

(https://paperswithcode.com/sota) across many standard benchmarks.

(ii) Discussion of deep learning research is very active on Twitter. http://

www.arxiv-sanity.com/top keeps track of some of the top most discussed pa-

18

https://onnx.ai/
https://mxnet.apache.org/
https://github.com/google/jax
https://course.fast.ai/
https://github.com/fastai/fastai
https://towardsdatascience.com/
http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://github.com/Machine-Learning-Tokyo/AI_Curriculum
https://github.com/Machine-Learning-Tokyo/AI_Curriculum
https://github.com/leriomaggio/deep-learning-keras-tensorflow
https://github.com/leriomaggio/deep-learning-keras-tensorflow
https://paperswithcode.com/
https://paperswithcode.com/sota
http://www.arxiv-sanity.com/top
http://www.arxiv-sanity.com/top

pers and comments. (iii) https://www.reddit.com/r/MachineLearning/

is also a good forum for research and general project discussion. (iv) https:

//www.paperdigest.org/conference-paper-digest/ contains snippets

of all the papers in many different top machine learning conferences. (v)

IPAM (Institute for Pure and Applied Mathematics) has a few programs

e.g. https://www.ipam.ucla.edu/programs/workshops/new-deep-

learning-techniques/?tab=schedule and https://www.ipam.ucla.edu/

programs/workshops/deep-learning-and-medical-applications/?tab=

schedule with videos overviewing deep learning applications in science.

Models, Training Code and Pretrained Models: As we discuss later in the

survey, publicly available models, training code and pretrained models are very

useful for techniques such as transfer learning. There are many good sources of

these, here are a few that are especially comprehensive and/or accessible:

(i) Pytorch and TensorFlow have a collection of pretrained models,

found at https://github.com/tensorflow/models and https://

pytorch.org/docs/stable/torchvision/models.html.

(ii) https://github.com/huggingface Hugging Face (yes, that really is

the name), offers a huge collection of both pretrained neural networks and

the code used to train them. Particularly impressive is their library of Trans-

former models, a one-stop-shop for sequential or language applications.

(iii) https://github.com/rasbt/deeplearning-models offers many

standard neural network architectures, including multilayer perceptrons,

convolutional neural networks, GANs and Recurrent Neural Networks.

19

https://www.reddit.com/r/MachineLearning/
https://www.paperdigest.org/conference-paper-digest/
https://www.paperdigest.org/conference-paper-digest/
https://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/?tab=schedule
https://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/?tab=schedule
https://www.ipam.ucla.edu/programs/workshops/deep-learning-and-medical-applications/?tab=schedule
https://www.ipam.ucla.edu/programs/workshops/deep-learning-and-medical-applications/?tab=schedule
https://www.ipam.ucla.edu/programs/workshops/deep-learning-and-medical-applications/?tab=schedule
https://github.com/tensorflow/models
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/huggingface
https://github.com/rasbt/deeplearning-models

(iv) https://github.com/hysts/pytorch_image_classification does

a deep dive into image classification architectures, with training code,

highly popular data augmentation techniques such as cutout, and careful

speed and accuracy benchmarking. See their page for some object detection

architectures also.

(v) https://github.com/openai/baselines provides implementations

of many popular RL algorithms.

(vi) https://modelzoo.co/ is a little like paperswithcode, but for models,

linking to implementations of neural network architectures for many dif-

ferent standard problems.

(vii) https://github.com/rusty1s/pytorch_geometric. Implementa-

tions and paper links for many graph neural network architectures.

Data Collection, Curation and Labelling Resources: A crucial step in ap-

plying deep learning to a problem is collecting, curating and labelling

data. This is a very important, time-intensive and often highly intricate

task (e.g. labelling object boundaries in an image for segmentation.) Luck-

ily, there are some resources and libraries to help with this, for exam-

ple https://github.com/tzutalin/labelImg, https://github.com/

wkentaro/labelme, https://rectlabel.com/ for images and https://

github.com/doccano/doccano for text/sequential data.

Visualization, Analysis and Compute Resources: When training deep neu-

ral network models, it is critical to visualize important metrics such as

loss and accuracy while the model is training. Tensorboard https://

20

https://github.com/hysts/pytorch_image_classification
https://github.com/openai/baselines
https://modelzoo.co/
https://github.com/rusty1s/pytorch_geometric
https://github.com/tzutalin/labelImg
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
https://rectlabel.com/
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard

www.tensorflow.org/tensorboard (which works with Pytorch and Ten-

sorFlow) is a very popular framework for doing this. Related is the colab ef-

fort https://colab.research.google.com/notebooks/welcome.ipynb,

which, aside from providing a user-friendly, interactive way for model develop-

ment and analysis (very similar to jupyter notebooks) also provides some (free!)

compute resources.

2.4 Standard Neural Network Models and Tasks

In this section, we overview the standard neural network models and the kinds of

tasks they can be used for, from convolutional networks for image predictions

and transformations to transformer models for sequential data to graph neural

networks for chemistry applications.

2.4.1 Supervised Learning

Before diving into the details of the different deep neural network models, it is

useful to briefly discuss supervised learning, the most standard method to train

these models. In the supervised learning framework, we are given data instances

and an associated label for each data instance, i.e. (data instance, label) pairs.

For example, the data instances might comprise of chest x-ray images, and the

labels (one for each chest x-ray image) a binary yes/no to whether it shows the

symptoms of pneumonia. Training the neural network model then consists of

finding values for its parameters so that when it is fed in a data instance (chest x-

21

https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://colab.research.google.com/notebooks/welcome.ipynb
https://jupyter.org/

Data Instances

DogVolcanoFiretruck

Optimize
parameters

Labels

?
Training

Unseen Data

Dog

Evaluation

Figure 2.2: The Supervised Learning process for training neural networks. The figure
illustrates the supervised learning process for neural networks. Data instances (in this
case images) and corresponding labels are collected. During the training step, the
parameters of the neural network are optimized so that when input a data instance,
the neural network outputs the corresponding label. During evaluation, the neural
network is given unseen data instances as input, and if trained successfully, will output
a meaningful label (prediction).

ray) as input, it correctly outputs the corresponding label (yes/no on whether the

chest x-ray has pneumonia.) To find these parameter values, we perform iterative

optimization to guide the neural network parameters to appropriate values, using

the given labels to provide supervision. Figure 2.2 shows a schematic of the

supervised learning setup for deep learning.

Supervised learning is the most basic yet most critical method for training

deep neural networks. As will be seen through the subsequent sections, there can

be significant diversity in the kinds of (data, label) pairs used. Even in settings

where clear (data, label) pairs are not possible to collect (Sections 2.7, 2.7.2), the

training problem is often reformulated and recast into a supervised learning

framework.

22

2.4.2 Multilayer Perceptrons

The first and most basic kind of deep neural network is the multilayer perceptron.

These models consist of a stack of fully connected layers (matrix multiplications)

interleaved with a nonlinear transform.

Despite their simplicity, they are useful for problems where the data might

consist of a set of distinct, (possibly categorical) features, for example, tab-

ular data. These models have more expressive power than logistic/linear

regression, though those methods would be a good first step to try. One

way to apply these models might be to first preprocess the data to com-

pute the distinct set of features likely to be important, and use this as input.

https://github.com/rasbt/deeplearning-models provides some im-

plementations of some example multilayer perceptron architectures.

Scientific Examples One recent scientific example is given by the use of simple

MLPs for pharamaceutical formulation [357], developing variants of a drug that

is stable and safe for patient use.

2.4.3 Convolutional Neural Networks

These are arguably the most well known family of neural networks, and are

very useful in working with any kind of image data. They are characterized by

having convolutional layers, which allow the neural network to reuse parameters

across different spatial locations of an image. This is a highly useful inductive

23

https://github.com/rasbt/deeplearning-models

bias for image data, and helping with efficiently learning good features, some,

like Gabor filters, which correspond to traditional computer vision techniques.

Convolutional neural networks (CNNs) have so many possible uses that we

overview some of the most ubiquitous tasks separately below.

Image Classification

This is arguably the simplest and most well known application of convolutional

neural networks. The model is given an input image, and wants to output a class

— one of a (typically) mutually exclusive set of labels for that image. The earlier

example, of mapping a chest x-ray image to a binary disease label, is precisely

image classification.

Convolutional neural networks for image classification is an extremely com-

mon application of deep learning. There many different types of CNN models for

classification: VGG — a simple stack of convolutional layers followed by a fully

connected layer [292], ResNets — which are a family of convolutional networks

of different sizes and depths and skip connections [117], DenseNets — another

family of models where unlike standard neural networks, every layer in a "block"

is connected to every other layer [135]. More recent, complex models include

ResNeXt [354] and recently EfficientNets, which have separate scaling factors

for network depth, width and the spatial resolution of the input image [308].

Tutorials, implementations and pretrained versions of many of these models can

be found in the references given in Section 2.3.

24

Figure 2.3: Differences between Image Classification, Object Detection, Semantic
Segmentation and Instance Segmentation tasks. Image source [2] The figure illustrates
the differences between classification, object detection, semantic segmentation and
instance segmentation. In classification, the whole image gets a single label (balloons),
while in object detection, each balloon is also localized with a bounding box. In semantic
segmentation, all the pixels corresponding to balloon are identified, while in instance
segmentation, each individual balloon is identified separately.

Scientific Examples: Image classification has found many varied scientific

applications, such as in analyzing cryoEM data [312] (with associated code

https://github.com/cramerlab/boxnet). An especially large body of

work has looked at medical imaging uses of image classification, specifically,

using CNNs to predict disease labels. Examples range from ophthalmology

[101], radiology (2D x-rays and 3D CT scans) [359, 10, 255], pathology [193, 73],

analyzing brain scans (PET, fMRI) [279, 62]. An excellent survey of the numerous

papers in this area is given by [316].

25

https://github.com/cramerlab/boxnet

Object Detection

Image classification can be thought of as a global summary of the image. Object

detection dives into some of the lower level details of the image, and looks at

identifying and localizing different objects in the image. For example, given

an input image of an outdoor scene having a dog, a person and a tree, object

detection would look at both identifying the presence of the dog, person and tree

and ‘circle their location’ in the image — specifically, put a bounding box around

each of them. The supervised learning task is thus to take an input image and

output the coordinates of these bounding boxes, as well as categorizing the kind

of object they contain.

Like image classification, there are many high performing and well estab-

lished convolutional architectures for object detection. Because of the intricacy

of the output task, these models tend to be more complex with a backbone compo-

nent (using an image classification model) and a region proposal component for

bounding box proposals. But there are still many pretrained models available

to download. One of the most successful early models was Faster R-CNN [264],

which significantly sped up the slow bounding box proposal component. Since

then there have been many improved models, including YOLOv3 [262], and

most recently EfficientDets [309]. Arguably the most popular recent architecture

however has been Mask R-CNN and its variants [116, 348]. Mask R-CNN per-

forms some segmentation as well as object detection (see below). Besides some

of the resources mentioned in Section 2.3, a good source of code and models is

https://github.com/rbgirshick, one of the key authors in a long line of

these object detection models. (Note though that there are many other popular

implementations, such as https://github.com/matterport/Mask_RCNN.)

26

https://github.com/rbgirshick
https://github.com/matterport/Mask_RCNN

This in depth article towardsdatascience object detection Faster R-CNN offers

a detailed tutorial on downloading, setting up and training an object detec-

tion model, including helpful pointers to data collection and annotation (the

latter using https://rectlabel.com/.) Most recently the Detectron2 sys-

tem https://github.com/facebookresearch/detectron2 [348] builds

on Mask R-CNN and offers many varied image task functionalities.

Scientific Examples: Object detection has also gained significant attention

across different scientific applications. It has been used in many medical settings

to localize features of interest, for example, tumor cells across different imaging

modalities [181, 373] or fractures in radiology [274, 314].

Semantic Segmentation and Instance Segmentation

Segmentation dives into the lowest possible level of detail — categorizing every

single image pixel. In semantic segmentation, we want to categorize pixels

according to the high level group they belong to. For example, suppose we are

given an image of a street, with a road, different vehicles, pedestrians, etc. We

would like to determine if a pixel is part of any pedestrian, part of any vehicle

or part of the road — i.e. label the image pixels as either pedestrian, vehicle

or road. Instance segmentation is even more intricate, where not only do we

want to categorize each pixel in this way, but do so separately for each instance

(and provide instance specific bounding boxes like in object detection). The

differences are illustrated in Figure 2.3 (sourced from [2].) Returning to the

example of the image of the street, suppose the image has three pedestrians. In

27

https://towardsdatascience.com/faster-r-cnn-object-detection-implemented-by-keras-for-custom-data-from-googles-open-images-125f62b9141a
https://rectlabel.com/
https://github.com/facebookresearch/detectron2

semantic segmentation, all of the pixels making up these three pedestrians would

fall under the same category – pedestrian. In instance segmentation, these pixels

would be further subdivided into those belonging to pedestrian one, pedestrian

two or pedestrian three.

Because segmentation models must categorize every pixel, their output

is not just a single class label, or a bounding box, but a full image. As a

result, the neural network architectures for segmentation have a slightly dif-

ferent structure that helps them better preserve spatial information about the

image. A highly popular and successful architecture, particularly for sci-

entific applications, has been the U-net [269], which also has a 3d volumet-

ric variant [46]. Other architectures include FCNs (Fully Convolutional Net-

works) [194], SegNet [16] and the more recent Object Contextual Representa-

tions [362]. A couple of nice surveys on semantic segmentation methods are

given by towardsdatascience Semantic Segementation with Deep Learning and

https://sergioskar.github.io/Semantic_Segmentation/.

For instance segmentation, Mask R-CNN [116] and its variants [348] have

been extremely popular. This tutorial Mask R-CNN tutorial with code pro-

vides a step by step example application. The recent Detectron2 package [348]

(https://github.com/facebookresearch/detectron2) also offers this

functionality.

Scientific Examples: Out of all of the different types of imaging prediction

problems, segmentation methods have been especially useful for (bio)medical

applications. Examples include segmenting brain MR images [218, 330], identi-

fying key regions of cells in different tissues [355, 297] and even studying bone

28

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823
https://sergioskar.github.io/Semantic_Segmentation/
https://towardsdatascience.com/mask-r-cnn-for-ship-detection-segmentation-a1108b5a083
https://github.com/facebookresearch/detectron2

structure [187].

Super-Resolution

Super resolution is a technique for transforming low resolution images to high

resolution images. This problem has been tackled both using convolutional

neural networks and supervised learning, as well as generative models.

Super resolution formally defined is an underdetermined problem, as there

may be many possible high resolution mappings for a low resolution im-

age. Traditional techniques imposed constraints such as sparsity to find a

solution. One of the first CNNs for super resolution, SRCNN [67] outlines

the correspondences between sparse coding approaches and convolutional

neural networks. More recently, Residual Dense Networks [374] have been a

popular approach for super-resolution on standard benchmarks (with code

available https://github.com/yulunzhang/RDN), as well as Predictive

Filter Flow [163], (code: https://github.com/aimerykong/predictive-

filter-flow) which has also looked at image denoising and deblurring. In

some of the scientific applications below, U-nets have also been successful for

super resolution.

Scientific Examples: Super resolution is arguably even more useful for scien-

tific settings than standard natural image benchmarks. Two recent papers look

at U-nets for super-resolution of fluorescence microscopy [342] (code: https:

//csbdeep.bioimagecomputing.com/) and electron microscopy [74]. Other

examples include super resolution of chest CT scans [320] and Brain MRIs [44].

29

https://github.com/yulunzhang/RDN
https://github.com/aimerykong/predictive-filter-flow
https://github.com/aimerykong/predictive-filter-flow
https://csbdeep.bioimagecomputing.com/
https://csbdeep.bioimagecomputing.com/

Image Registration

Image registration considers the problem of aligning two input images to each

other. Particularly relevant to scientific applications, the two input images might

be from different imaging modalities (e.g. a 3D scan and a 2D image), or mapping

a moving image to a canonical template image (such as in MRIs.) The alignment

enables better identification and analysis of features of interest.

The potential of image registration is primarily demonstrated through differ-

ent scientific applications. At the heart of the technique is a convolutional neural

network, often with an encoder-decoder structure (similar to the U-net [269]) to

guide the alignment of two images. Note that while this underlying model is

trained through supervised learning, many registration methods do not require

explicit labels, using similarity functions and smoothness constraints to provide

supervision. For example, [19] develop an unsupervised method to perform

alignment for Brain MRIs. The code for this and several followup papers [20, 52]

provides a helpful example for building off of and applying these methods

https://github.com/voxelmorph/voxelmorph. Other useful resources

include https://github.com/ankurhanda/gvnn (with corresponding pa-

per [110]) a library for learning common parametric image transformations.

Pose Estimation

Pose estimation, and most popularly human pose estimation, studies the problem

of predicting the pose of a human in a given image. In particular, a deep neural

network model is trained to identify the location of the main joints, the keypoints

30

https://github.com/voxelmorph/voxelmorph
https://github.com/ankurhanda/gvnn

Figure 2.4: Pose Estimation. Image source [300] The task of pose estimation, specif-
ically multi-person 2D (human) pose-estimation is depicted in the figure. The neural
network model predicts the positions of the main joints (keypoints), which are combined
with a body model to get the stick-figure like approximations of pose overlaid on the
multiple humans in the image. Variants of these techniques have been used to study
animal behaviors in scientific settings.

(e.g. knees, elbows, head) of the person in the image. These predictions are

combined with existing body models to get the full stick-figure-esque output

summarizing the pose. (See Figure 2.4, sourced from [300], for an illustration.)

(2D) Human pose estimation is a core problem in computer vision with

multiple benchmark datasets, and has seen numerous convolutional architec-

tures developed to tackle it. Some of the earlier models include a multi-stage

neural network introduced by [341], and a stacked hourglass model [223] that

alternatingly combines high and low resolutions of the intermediate represen-

tations. More recently, HRNet [300], which keeps a high resolution representa-

tion throughout the model is a top performing architecture (code at https://

github.com/leoxiaobin/deep-high-resolution-net.pytorch). Also

of interest might be [35] provides an end-to-end system for multiperson pose

31

https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

detection in the corresponding code repository https://github.com/CMU-

Perceptual-Computing-Lab/openpose.

Scientific Examples: Pose estimation has gained significant interest in neuro-

science settings, where videos of animals are recorded, and automatically pre-

dicting poses in the image can help identify important behaviors. An example is

given by [206, 207], with associated code http://www.mousemotorlab.org/

deeplabcut.

Other Tasks with Convolutional Neural Networks

In the preceding sections, we have overviewed some of the most common tasks

for which convolutional neural networks are used. However, there are many

additional use cases of these models that we have not covered, including video

prediction [77], action recognition [69] and style transfer [88]. We hope that the

provided references and resources enable future investigation into some of these

methods also.

2.4.4 Graph Neural Networks

Many datasets, such as (social) network data and chemical molecules have a

graph structure to them, consisting of vertices connected by edges. An active

area of research, graph neural networks, has looked at developing deep learning

methods to work well with this kind of data. The input graph consists of nodes v

32

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
http://www.mousemotorlab.org/deeplabcut
http://www.mousemotorlab.org/deeplabcut

having some associated feature vector hv, and sometimes edges euv also having

associated features zeuv . For example, nodes v might correspond to different atoms,

and the edges euv to the different kinds of chemical bonds between atoms. At a

high level, most graph neural networks compute useful information from the

data by (i) using the feature vectors of the neighbors of each vertex v to compute

information on the input graph instance (ii) using this information to update the

feature vector of v. This process, which respects the connectivity of the graph,

is often applied iteratively, with the final output either at the vertex level (Are

meaningful vertex feature vectors computed?) or at the level of the full input

graph (Is some global property of the entire graph correctly identified?)

Application Characteristics Problems where the data has an inherent graph

structure, and the goal is to learn some function on this graph structure — either

at the per vertex level or a global property of the entire graph. There are also

spatio-temporal graph neural networks — performing predictions on graph

structures evolving over time.

Technical References Although most graph neural networks follow the high

level structure of aggregating information from vertex neighbors and using

this information to update feature vectors, there are many many different ar-

chitectural variants, with connections to other neural network models such

as convolutional nets and recurrent models. Recent work has also looked

at spatio-temporal graph networks for problems like action recognition in

video [179]. A nice unification of many of the first popular methods, such

as [70, 24, 185], is given by [92]. A more recent survey paper [350], provides an

extremely comprehensive overview of the different kinds of architectures, problems,

33

benchmark datasets and open source resources. Some useful code repositories

include https://github.com/rusty1s/pytorch_geometric, https://

github.com/deepmind/graph_nets and https://github.com/dmlc/

dgl, which together cover most of the popular deep learning frameworks.

Scientific Examples Graph neural networks have been very popular for several

chemistry tasks, such as predicting molecular properties [70, 134, 92, 147], deter-

mining protein interfaces [82, 317] and even generating candidate molecules

[56, 31]. A useful library for many of these chemistry tasks is https://

github.com/deepchem, which also has an associated benchmark task [349]. A

detailed tutorial of different graph neural networks and their use in molecule gen-

eration can be seen at https://www.youtube.com/watch?v=VXNjCAmb6Zw.

2.4.5 Neural Networks for Sequence Data

A very common attribute for data is to have a sequential structure. This might

be frames in a video, amino acid sequences for a protein or words in a sentence.

Developing neural network models to work with sequence data has been one of

the most extensive areas of research in the past few years. A large fraction of this

has been driven by progress on tasks in natural language processing, which focuses

on getting computers to work with the language used by people to communicate.

Two popular tasks in this area, which have seen significant advances, have

been machine translation — developing deep learning models to translate from

one language to another and question answering — taking as input a (short)

piece of text and answering a question about it. In the following sections, we

34

https://github.com/rusty1s/pytorch_geometric
https://github.com/deepmind/graph_nets
https://github.com/deepmind/graph_nets
https://github.com/dmlc/dgl
https://github.com/dmlc/dgl
https://github.com/deepchem
https://github.com/deepchem
https://www.youtube.com/watch?v=VXNjCAmb6Zw

first overview some of the main NLP tasks that have driven forward sequence

modelling and then the neural network models designed to solve these tasks.

Language Modelling (Next Token Prediction)

Language modelling is a training method where the deep learning model takes

as input the tokens of the sequence up to time/position t, and then uses these to

predict token t + 1. This is in fact a self-supervised training method (see Section

2.7), where the data provides a natural set of labels without additional labelling

needed. In the NLP context, the neural network is fed in a sequence of words,

corresponding to a sentence or passage of text, and it tries to predict the next

word. For example, given a sentence, "The cat sat on the roof", the network

would first be given as input "The" and asked to predict "cat", then be fed in

"The cat" and asked to predict "sat", and so on. (There are some additional

details in implementation, but this is the high level idea.) Because of the easy

availability of data/labels, and the ability to use language modelling at different

levels — for words and even for characters, it has been a popular benchmark

in natural language, and also for capturing sequence dependencies in scientific

applications, such as protein function prediction [112, 118], and using the hidden

representations as part of a larger pipeline for protein structure prediction in

AlphaFold [282] (with opensourced code https://github.com/deepmind/

deepmind-research/tree/master/alphafold_casp13.)

35

https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13

Figure 2.5: Illustration of the Sequence to Sequence prediction task. Image source
[369] The figure shows an illustration of a Sequence to Sequence task, translating an
input sentence (sequence of tokens) in English to an output sentence in German. Note
the encoder-decoder structure of the underlying neural network, with the encoder
taking in the input, and the decoder generating the output, informed by the encoder
representations and the previously generated output tokens. In this figure, the input
tokens are fed in one by one, and the output is also generated one at a time, which is
the paradigm when using Recurrent Neural Networks as the underlying model. With
Transformer models, which are now extremely popular for sequence to sequence tasks,
the sequence is input all at once, significantly speeding up use.

Sequence to Sequence

Another very popular task for sequence data is sequence to sequence — transform-

ing one sequence to another. This is precisely the setup for machine translation,

where the model gets an input sentence (sequence) in say English, and must

translate it to German, which forms the output sentence (sequence). Some of

the first papers framing this task and tackling it in this way are [17, 304, 328].

Sequence to sequence tasks typically rely on neural network models that have an

encoder-decoder structure, with the encoder neural network taking in the input se-

quence and learning to extract the important features, which is then used by the

decoder neural network to produce the target output. Figure 2.5(sourced from

[369]) shows an example of this. This paradigm has also found some scientific

applications as varied as biology [34] and energy forcasting [205]. Sequence to se-

quence models critically rely on a technique called attention, which we overview

36

below. For more details on this task, we recommend looking at some of the

tutorials and course notes highlighted in Section 2.3.

Question Answering

One other popular benchmark for sequence data has been question answering.

Here, a neural network model is given a paragraph of text (as context) and a

specific question to answer on this context as input. It must then output the part

of the paragraph that answers the question. Some of the standard benchmarks

for this task are [121, 256], with http://web.stanford.edu/class/cs224n/

slides/cs224n-2019-lecture10-QA.pdf providing an excellent overview

of the tasks and common methodologies. Question answering critically relies on

the neural network model understanding the relevance and similarity of different

sets of sequences (e.g. how relevant is this part of the context to the question

of interest?). This general capability (with appropriate reformulation) has the

potential to be broadly useful, both for determining similarity and relevance on

other datasets, and for question answering in specialized domains [84].

Recurrent Neural Networks

Having seen some of the core tasks in deep learning for sequence data, these

next few sections look at some of the key neural network models.

Recurrent neural networks (RNNs) were the first kind of deep learning model

successfully used on many of the aforementioned tasks. Their distinguishing

feature, compared to CNNs or MLPs (which are feedforward neural networks,

37

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture10-QA.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture10-QA.pdf

Figure 2.6: Diagram of a Recurrent Neural Network model, specifically a LSTM
(Long-Short Term Network). Image source [229] The figure illustrates an LSTM net-
work, a type of Recurrent Neural Network. We see that the input xt at each timestep also
inform the internal network state in the next timestep (hence a recurrent neural network)
through a gating mechanism. This gating mechanism is called an LSTM, and consists of
sigmoid and tanh functions, which transform and recombine the input for an updated
internal state, and also emit an output. The mechanics of this gating process are shown
in the middle cell of the figure.

mapping input straight to output), is that there are feedback connections, enabling

e.g. the output at each timestep to become the input for the next timestep, and

the preservation and modification of an internal state across timesteps. When

RNNs are used for sequential data tasks, sequences are input token by token,

with each token causing an update of the internal cell state of the RNN, and also

making the RNN emit a token output. Note that this enables these models to

work with variable length data — often a defining characteristic of sequence data.

How the input is processed, cell state updated and output emitted are controlled

by gating functions — see the technical references!

Application Characteristics: Problems where the data has a sequential nature

(with different sequences of varying length), and prediction problems such as

determining the next sequence token, transforming one sequence to another, or

determining sequence similarities are important tasks.

38

Technical References: Research on sequence models and RNNs has evolved

dramatically in just the past couple of years. The most successful and popu-

lar kind of RNN is a bi-LSTM with Attention, where LSTM (Long-Short Term

Memory) [126] refers to the kind of gating function that controls updates in

the network, bi refers to bidirectional (the neural network is run forwards and

backwards on the sequence) and Attention is a very important technique that

we overview separately below. (Some example papers [210, 211] and code

resources https://github.com/salesforce/awd-lstm-lm.) This excel-

lent post https://colah.github.io/posts/2015-08-Understanding-

LSTMs/ provides a great overview of RNNs and LSTMs in detail. (Figure 2.6

shows a diagram from the post revealing the details of the gating mechanisms in

LSTMs.) The post also describes a small variant of LSTMs, Gated Recurrent Units

(GRUs) which are also popular in practice [185]. While RNNs (really bi-LSTMs)

have been very successful, they are often tricky to develop and train, due to their

recursiveness presenting challenges with optimization (the vanishing/exploding

gradients problem [125, 237, 111]), with performing fast model training (due to

generating targets token by token), and challenges learning long term sequential

dependencies. A new type of feedforward neural network architecture, the

Transformer (overviewed below), was proposed to alleviate the first two of these

challenges.

Scientific Examples: RNNs have found several scientific applications for data

with sequential structure, such as in genomics and proteomics [242, 190, 160].

39

https://github.com/salesforce/awd-lstm-lm
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Attention

A significant problem in using RNNs and working with sequential data is the

difficulty in capturing long range dependencies. Long range dependencies are when

tokens in the sequence that are very far apart from each other must be processed

together to inform the correct output. RNNs process sequences in order, token

by token, which means they must remember all of the important information

from the earlier tokens until much later in the sequence — very challenging

as the memory of these architectures is far from perfect. Attention [45, 18] is a

very important technique that introduces shortcut connections to earlier tokens,

which alleviates the necessity to remember important features for the duration

of the entire sequence. Instead it provides a direct way to model long term

dependencies — the neural network has the ability to look back and attend to what

it deems relevant information (through learning) earlier in the input. A very nice

overview of attention is provided by https://lilianweng.github.io/lil-

log/2018/06/24/attention-attention.html. A variant of attention, self-

attention, which can be used to help predictions on a single input sequence, is the

core building block of Transformer models.

Transformers

While attention helped with challenges in long range dependencies, RNNs still

remained slow to train and tricky to design (due to optimization challenges

with vanishing/exploding gradients.) These challenges were inherent to their

recurrent, token-by-token nature, prompting the proposal of a new feedforward

neural network to work with sequential data, the Transformer [325], which

40

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Figure 2.7: Image of a couple of layers from a Transformer network. Image source
[8] The figure depicts the core sequence of layers that are fundamental to Transformer
neural networks, a self-attention layer (sometimes called a self-attention head) followed
by fully connected layers. Note that when working with sequence data, transformers
take the entire input sequence all at once, along with positional information (in this case
the input sequence being "Thinking Machines".)

critically relies on attentional mechanisms (the paper is in fact titled Attention is

All you Need.) During training transformers take in the entire sequence as input

all at once, but have positional embeddings that respects the sequential nature of

the data. Transformers have been exceptionally popular, becoming the dominant

approach to many natural language tasks and sequential tasks.

Application Characteristics: Problems where the data has a sequential nature

and long range dependencies that need to be modelled. Given the large number

of pretrained transformer models, they can also be very useful in settings where

pretrained models on standard benchmarks can be quickly adapted to the target

problem.

Technical References: The original transformer paper [325] provides a nice

overview of the motivations and the neural network architecture. The model was

41

designed with machine translation tasks in mind, and so consists of an encoder

neural network and a decoder neural network. With transformers being adopted

for tasks very different to machine translation, the encoder and decoder are

often used in stand-alone fashions for different tasks — for example, the encoder

alone is used for question answering, while the decoder is important for text

generation. Two very accessible step by step tutorials on the transformer are

The Annotated Transformer and The Illustrated Transformer. A nice example of

some of the language modelling capabilities of this models is given by [247].

Since the development of the transformer, there has been considerable re-

search looking at improving the training of these models, adjusting the self-

attention mechanism and other variants. A very important result using the

transformer has been BERT (Pretraining of deep Bi-directional Transformers for

Language understanding) [60]. This paper demonstrates that performing transfer

learning (see Section 2.5.1) using a transformer neural network can be extremely

successful for many natural language tasks. (Some of the first papers showing the

potential of transfer learning in this area were [132, 247], and since BERT, there

have been followups which extend the model capabilities [358].) From a practi-

cal perspective, the development of transformers, BERT and transfer learning

mean that there are many resources available online for getting hold of code and

pretrained models. We refer to some of these in Section 2.3, but of particular note

is https://github.com/huggingface/transformers which has an excel-

lent library for transformer models. A good overview of BERT and transfer learn-

ing in NLP is given in http://jalammar.github.io/illustrated-bert/.

42

https://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/
https://github.com/huggingface/transformers
http://jalammar.github.io/illustrated-bert/

Scientific Examples: There have been several interesting examples of trans-

formers used in scientific settings, such as training on protein sequences to find

representations encoding meaningful biological properties [267], protein genera-

tion via language modelling [200], bioBERT [174] for text mining in biomedical

data (with pretrained model and training code), embeddings of scientific text [27]

(with code https://github.com/allenai/scibert) and medical question

answering [332].

Other Tasks with Sequence Data

In the previous sections, we’ve given an overview of some of the important

benchmark tasks for sequential data, and the types of deep learning models

available to tackle them. As with convolutional networks, this is not a compre-

hensive overview, but hopefully thorough enough to help with generating ideas

on possible applications and offering pointers to other useful related areas. A

few other sequential data tasks that might be of interest are structured prediction,

where the predicted output has some kind of structure, from tree structures (in

e.g. parsing) [39, 343] to short, executable computer program structure [375]

and summarization, where passages of text are summarized by a neural network

[188, 378]. We’ll also discuss word embeddings later in the survey.

2.4.6 Section Summary

In this section, we have overviewed supervised learning, some of the core neu-

ral network models and the kinds of important tasks they can be used for. As

43

https://github.com/naver/biobert-pretrained
https://github.com/dmis-lab/biobert
https://github.com/allenai/scibert

previously discussed, these topics span an extremely large area of research, so

there are some areas, e.g. deep neural networks for set structured data [364, 162],

modelling different invariances — invariances to specified Lie groups for appli-

cation to molecular property prediction [80], spherical invariances [48, 49] not

covered. But we hope the material and references presented help inspire novel

contributions to these very exciting and rapidly evolving research directions.

2.5 Key (Supervised Learning) Methods

In the previous section we saw different kinds of neural network models, and the

many different types of tasks they could be used for. To train the models for these

tasks, we typically rely on the supervised learning methodology — optimize

model parameters to correctly output given labels (the supervision) on a set of

training data examples.

In more detail, the standard supervised learning method for deep neural

networks consists of (i) collecting data instances (e.g. images) (ii) collecting labels

for the data instances (e.g. is the image a cat or a dog) (iii) splitting the set of

collected (data instance, label) into a training set, validation set and test set (iv)

randomly initializing neural network parameters (iv) optimizing parameters so

the network outputs the correct corresponding label given an input data instance

on the training set (v) further tuning and validating on the validation and test

sets.

In this section we overview methods that use variants of this process, for

example initializing the neural network parameters differently or dealing with

44

Pretrained
Weights:
Contain
useful

features

Step 1: Pretraining
Train on diverse, generic

task, e.g. ImageNet

Randomly
Initialize

Step 2: Finetuning
Train on target task

Final Model

Figure 2.8: The Transfer Learning process for deep neural networks. Transfer learning
is a two step process for training a deep neural network. Instead of intializing parameters
randomly and directly training on the target task, we first perform a pretraining step, on
some diverse, generic task. This results in the neural network parameters converging to
a set of values, known as the pretrained weights. If the pretraining task is diverse enough,
these pretrained weights will contain useful features that can be leveraged to learn the
target task more efficiently. Starting from the pretrained weights, we then train the
network on the target task, known as finetuning, giving us the final model.

shifts between the training data and the test sets. In Section 2.7, we look at

variants that reduce the dependence on collecting labels.

2.5.1 Transfer Learning

Through the preceding sections, we’ve made references to using pretrained mod-

els. This is in fact referring to a very important method for training deep neural

networks, known as transfer learning. Transfer learning is a two step process for

training a deep neural network model, a pretraining step, followed by a finetuning

step, where the model in trained on the target task. More specifically, we take

a neural network with parameters randomly initialized, and first train it on a

45

standard, generic task — the pretraining step. For example, in image based tasks,

a common pretraining task is ImageNet [58], which is an image classification task

on a large dataset of natural images. With an appropriate pretraining task that is

generic and complex enough, the pretraining step allows the neural network to

learn useful features, stored in its parameters, which can then be reused for the

second step, finetuning. In finetuning, the pretrained neural network is further

trained (with maybe some minor modifications to its output layer) on the true

target task of interest. This process is illustrated in Figure 2.8. But being able to use

the features it learned during pretraining often leads to boosts in performance

and convergence speed of the target task, as well as needing less labelled data.

Because of these considerable benefits, transfer learning has been extraordi-

narily useful in many settings, particularly in computer vision [136], which had

many early successful applications. As overviewed in Section 2.4.5, the recent

development of models like ULMFiT [132] and especially BERT [60] has also

made transfer learning extremely successful in natural language and sequential

data settings, with recent work making the transfer learning process even more

efficient [130, 276]. Most importantly, the ready availability of standard neural

network architectures pretrained on standard benchmarks through many open

sourced code repositories on GitHub (examples given in Section 2.3) has meant

that downloading and finetuning a standard pretrained model has become the

de-facto standard for most new deep learning applications.

Typically, performing transfer learning is an excellent way to start work on

a new problem of interest. There is the benefit of using a well-tested, standard

neural network architecture, aside from the knowledge reuse, stability and

convergence boosts offered by pretrained weights. Note however that the precise

46

effects of transfer learning are not yet fully understood, and an active research

area [166, 254, 368, 224, 202, 248, 329] looks at investigating its exact properties.

For transfer learning in vision [166, 368, 161] may be of particular interest for

their large scale studies and pretraining recommendations.

2.5.2 Domain Adaptation

Related to transfer learning is the task of domain adaptation. In (unsupervised)

domain adaptation, we have training data and labels in a source domain, but

want to develop a deep learning model that will also work on a target domain,

where the data instances may look different to those in the source domain, but

the high level task is the same. For instance, our source domain many consist

of images of handwritten digits (zero to nine) which we wish to classify as

the correct number. But the target domain many have photographs of house

numbers (from zero to nine), that we also wish to classify as the correct number.

Domain adaptation techniques help build a model on the source domain that

can also work (reasonably) well out-of-the-box on the shifted target domain.

The most dominant approach to domain adaptation in deep learning is to

build a model that can (i) perform well on the source domain task, and (ii)

learns features that are as invariant to the domain shift as possible. This is

achieved through jointly optimizing for both of these goals. Returning to our

example on handwritten digits and house number photographs, (i) corresponds

to the standard supervised learning classification problem of doing well on the

(source) task of identifying handwritten digits correctly while (ii) is more subtle,

and typically involves explicitly optimizing for the hidden layer representations of

47

handwritten digits and house number photographs to look the same as each other

— domain invariance. Some popular ways to implement this include gradient

reversal [85], minimizing a distance function on the hidden representations [195],

and even adversarial training [86, 289]. More recently, [301] look at using self-

supervision (see Section 2.7) to jointly train on the source and target domains,

enabling better adaptation.

Other approaches to domain adaptation include translating data instances

from the source to the target domain, and bootstrapping/co-training approaches

(see Section 2.7.2). Some of these methods are overviewed in tutorials such as

Deep Domain Adaptation in Computer Vision.

2.5.3 Multitask Learning

In many supervised learning applications, ranging from machine translation [5]

to scientific settings [257, 243], neural networks are trained in a multitask way –

predicting several different outputs for a single input. For example, in image

classification, given an input medical image, we might train the network not

only to predict a disease of interest, but patient age, history of other related

disease, etc. This often has beneficial effects even if there is only one prediction

of interest, as it provides the neural network with useful additional feedback

that can guide it in learning the most important data features. (This can be so

useful that sometimes auxiliary prediction targets are defined solely for this

purpose.) Additionally, the prediction of multiple targets can mean that more

data is available to train the model (only a subset of the data has the target

labels of interest, but many more data instances have other auxiliary labels.) The

48

https://towardsdatascience.com/deep-domain-adaptation-in-computer-vision-8da398d3167f

most extreme version of this is to simultaneously train on two entirely different

datasets. For example, instead of performing a pretraining/finetuing step, the

model could be trained on both ImageNet and a medical imaging dataset at the

same time.

Multitask learning is usually implemented in practice by giving the neural

network multiple heads. The head of a neural network refers to its output layer,

and a neural network with multiple heads has one head for each predictive task

(e.g. one head for predicting age, one for predicting the disease of interest) but

shares all of the other features and parameters, across these different predictive

tasks. This is where the benefit of multitask learning comes from — the shared

features, which comprise of most of the network, get many different sources of

feedback. Implementing multitask learning often also requires careful choice

of the way to weight the training objectives for these different tasks. A nice

survey of some popular methods for multitask learning is given by https:

//ruder.io/multi-task/index.html#fn4, and a tutorial on some of the

important considerations in http://hazyresearch.stanford.edu/multi-

task-learning. One package for implementing multitask learning is found

in https://github.com/SenWu/emmental and step-by-step example with

code excerpts in towardsdatascience Multitask Learning: teach your AI more to

make it better.

2.5.4 Weak Supervision (Distant Supervision)

Suppose it is very difficult to collect high quality labels for the target task of inter-

est, and neither is there an existing, standard, related dataset and corresponding

49

https://ruder.io/multi-task/index.html#fn4
https://ruder.io/multi-task/index.html#fn4
http://hazyresearch.stanford.edu/multi-task-learning
http://hazyresearch.stanford.edu/multi-task-learning
https://github.com/SenWu/emmental
https://towardsdatascience.com/multitask-learning-teach-your-ai-more-to-make-it-better-dde116c2cd40
https://towardsdatascience.com/multitask-learning-teach-your-ai-more-to-make-it-better-dde116c2cd40

pretrained model to perform transfer learning from. How might one provide

the deep learning model with enough supervision during the training process?

While high quality labels might be hard to obtain, noisy labels might be relatively

easy to collect. Weak supervision refers to the method of training a model on a

dataset with these noisy labels (typically for future finetuning), where the noisy

labels are often generated in an automatic process.

In computer vision (image based) tasks, some examples are: taking an im-

age level label (for classification) and automatically inferring pixel level labels

for segmentation [238], clustering hidden representations computed by a pre-

trained network as pseudo-labels [356], or taking Instagram tags as labels [202]

for pretraining. In language tasks, examples are given by [214, 127, 366], which

provide noisy supervision by assuming all sentences mentioning two entities of

interest express a particular relation (also known as distant supervision). A nice

overview of weak supervision and its connection to other areas is given in https:

//hazyresearch.github.io/snorkel/blog/ws_blog_post.html, with

a related post looking specifically at medical and scientific applications http:

//hazyresearch.stanford.edu/ws4science.

2.5.5 Section Summary

In this section, we have overviewed some of the central supervised learning based

methodologies for developing deep learning models. This is just a sampling of

the broad collection of existing methods, and again, we hope that the descriptions

and references will help facilitate further exploration of other approaches. One

method not covered that might be of particular interest is multimodal learning,

50

https://hazyresearch.github.io/snorkel/blog/ws_blog_post.html
https://hazyresearch.github.io/snorkel/blog/ws_blog_post.html
http://hazyresearch.stanford.edu/ws4science
http://hazyresearch.stanford.edu/ws4science

where neural networks are simultaneously trained on data from different modal-

ities, such as images and text [197, 333, 146]. Multimodal learning also provides

a good example of the fact that it is often difficult to precisely categorize deep

learning techniques as only being useful for a specific task or training regime. For

example, we looked at language modelling for sequence tasks in this supervised

learning section, but language modelling is also an example of self-supervision

(Section 2.7) and generative models (Section 2.8.1). There are many rich combi-

nations of the outlined methods in both this section and subsequent sections,

which can prove very useful in the development of an end to end system.

2.6 Interpretability, Model Inspection and Representation

Analysis

Many standard applications of deep learning (and machine learning more

broadly) focus on prediction — learning to output specific target values given an

input. Scientific applications, on the other hand, are often focused on understand-

ing — identifying underlying mechanisms giving rise to observed patterns in

the data. When applying deep learning in scientific settings, we can use these

observed phenomena as prediction targets, but the ultimate goal remains to

understand what attributes give rise to these observations. For example, the core

scientific question might be on how certain amino acid sequences (encoding a

protein) give rise to particular kinds of protein function. While we might frame

this as a prediction problem, training a deep neural network to take as input

an amino acid sequence and output the predicted properties of the protein, we

would ideally like to understand how that amino acid sequence resulted in the

51

observed protein function.

To answer these kinds of questions, we can turn to interpretability techniques.

Interpretability methods are sometimes equated to a fully understandable, step-

by-step explanation of the model’s decision process. Such detailed insights can

often be intractable, especially for complex deep neural network models. Instead,

research in interpretability focuses on a much broader suite of techniques that

can provide insights ranging from (rough) feature attributions — determining

what input features matter the most, to model inspection — determining what

causes certain neurons in the network to fire. In fact, these two examples also

provide a rough split in the type of interpretability method.

One large set of methods (which we refer to as Feature Attribution and Per

Example Interpretability) concentrates on taking a specific input along with a

trained deep neural network, and determining what features of the input are

most important. The other broad class of techniques looks at taking a trained

model, and a set of inputs, to determine what different parts of the network

have learned (referred to as Model Inspection and Representational Analysis).

This latter set of methods can be very useful in revealing important, hidden

patterns in the data that the model has implicitly learned through being trained

on the predictive task. For example, in [169], which looks at machine translation,

representation analysis techniques are used to illustrate latent linguistic structure

learned by the model. We overview both sets of methods below.

52

Figure 2.9: The output of SmoothGrad, a type of saliency map. Image source [294]
The figure shows the original input image (left), raw gradients (middle), which are often
too noisy for reliable feature attributions, and SmoothGrad (right), a type of saliency
map that averages over perturbations to produce a more coherent feature attribution
visualization the input. In particular, we can clearly see that the monument in the picture
is important for the model output.

2.6.1 Feature Attribution and Per Example Interpretability

We start off by overviewing some of the popular techniques used to provide

feature attribution at a per example level, answering questions such as which parts

of an input image are most important for a particular model prediction. These

techniques can be further subcategorized as follows:

Saliency Maps and Input Masks

At a high level, saliency maps take the gradient of the output prediction with

respect to the input. This gives a mask over the input, highlighting which regions

have large gradients (most important for the prediction) and which have smaller

gradients. First introduced by [291], there are many variants of saliency maps,

such as Grad-CAM [281], SmoothGrad [294], IntGrad [302], which make the

resulting feature attributions more robust. These and other methods are imple-

mented in https://github.com/PAIR-code/saliency. Note that while

these methods can be extremely useful, their predictions are not perfect [151],

53

https://github.com/PAIR-code/saliency

and must be validated further.

Closely related to these saliency methods is [232], which provides the

ability to inspect the kinds of features causing neurons across different hid-

den layers to fire. The full, interactive paper can be read at https://

distill.pub/2018/building-blocks/ with code and tutorials available

at https://github.com/tensorflow/lucid.

Many other techniques look at computing some kind of input mask, several

of them using deconvolutional layers, first proposed by [365] and built on by [152]

and [30]. Other work looks at directly optimizing to find a sparse mask that will

highlight the most important input features [81] (with associated code https:

//github.com/jacobgil/pytorch-explain-black-box) or finding such

a mask through an iterative algorithm [36].

Feature Ablations and Perturbations

Related to some of masking approaches above, but with enough differences to

categorize separately are several methods that isolate the crucial features of the

input either by performing feature ablations or computing perturbations of the

input and using these perturbations along with the original input to inform the

importance of different features.

Arguably the most well known of the ablation based approaches is the notion

of a Shapely value, first introduced in [284]. This estimates the importance of a

particular feature x0 in the input by computing the predictive power of a subset of

input features containing x0 and averaging over all possible such subsets. While

54

https://distill.pub/2018/building-blocks/
https://distill.pub/2018/building-blocks/
https://github.com/tensorflow/lucid
https://github.com/jacobgil/pytorch-explain-black-box
https://github.com/jacobgil/pytorch-explain-black-box

Shapely values may be expensive to compute naively for deep learning, follow

on work [198] has proposed more efficient (and expressive) variants, with highly

popular opensourced implementation: https://github.com/slundberg/

shap.

The shap opensourced implementation above also unifies some related ap-

proaches that use perturbations to estimate feature values. One such approach

is LIME [266], which uses multiple local perturbations to enable learning an

interpretable local model. Another is DeepLIFT, which uses a reference input

to compare activation differences [288], and yet another approach, Layer-wise

Relevance Propagation [13] looks at computing relevance scores in a layerwise

manner.

Other work performing ablations to estimate feature importance includes

[380] (with code https://github.com/lmzintgraf/DeepVis-PredDiff),

while [81], described in Section 2.6.1 has elements of using input perturbations.

2.6.2 Model Inspection and Representational Analysis

In this second class of interpretability methods, the focus is on gaining insights

not at a single input example level, but using a set of examples (sometimes

implicitly through the trained network) to understand the salient properties of

the data. We overview some different approaches below.

55

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/lmzintgraf/DeepVis-PredDiff

Figure 2.10: Visualization of the kinds of features hidden neurons have learned to
detect. Image source [231] This figure, from [231], illustrates the result of optimizing
inputs to show what features hidden neurons have learned to recognize. In this example,
the hidden neuron has learned to detect (especially) soccer balls, tennis balls, baseballs,
and even the legs of soccer players.

Probing and Activating Hidden Neurons

A large class of interpretability methods looks at either (i) probing hidden neurons

in the neural network — understanding what kinds of inputs it activates for

(ii) directly optimizing the input to activate a hidden neuron. Both of these

techniques can provide useful insights into what the neural network has chosen

to pay attention to, which in turn corresponds to important properties of the

data.

Several papers falls into the probing category [361, 376], with an especially

thorough study given by Network Dissection [26]. Here here hidden neurons are

categorized by the kinds of features they respond to. The paper website http:

//netdissect.csail.mit.edu/ contains method details as well as links to the

code and data.

The other broad category of methods take a neural network, fix its param-

eters, and optimize the input to find the kinds of features that makes some

hidden neuron activate. There are several papers using this approach, but

of particular note is Feature Visualization [231], with an interactive article and

code at: https://distill.pub/2017/feature-visualization/. Fol-

56

http://netdissect.csail.mit.edu/
http://netdissect.csail.mit.edu/
https://distill.pub/2017/feature-visualization/

Figure 2.11: Clustering neural network hidden representations to reveal linguistic
structures. Image source [169] In work on analyzing multilingual translation systems
[169], representational analysis techniques are used to compute similarity of neural
network (Transformer) hidden representations across different languages. Performing
clustering on the result reveals grouping of different language representations (each
language a point on the plot) according to language families, which affect linguistic
structure. Importantly, this analysis uses the neural network to identify key properties
of the underlying data, a mode of investigation that might be very useful in scientific
domains.

lowup work, Activation Atlases [37] (with page https://distill.pub/2019/

activation-atlas/), does this across many different concepts, providing a

full mapping of the features learned by the neural network. More recently [230]

has used this as a building block to further understand how certain computations

are performed in a neural network. Also related is [150], which looks at finding

linear combinations of hidden neurons that correspond to interpretable concepts.

57

https://distill.pub/2019/activation-atlas/
https://distill.pub/2019/activation-atlas/

Dimensionality Reduction on Neural Network Hidden Representations

In many standard scientific settings, e.g. analyzing single cell data, dimension-

ality reduction methods such as PCA, t-SNE [199], UMAP [209] are very useful

in revealing important factors of variation and critical differences in the data

subpopulations e.g. tumor cells vs healthy cells. Such methods can also be used

on the hidden activations (over some input dataset) of a neural network. Through

the process of being trained on some predictive task, the neural network may

implicitly learn these important data attributes in its hidden representations,

which can then be extracted through dimensionality reduction methods.

Representational Comparisons and Similarity

Related to more standard approaches of dimensionality reduction and clustering,

a line of work has studied comparing hidden representations across different neu-

ral network models. Early work applied matching algorithms [184] with follow

on approaches using canonical correlation analysis [253, 220] (with associated code

https://github.com/google/svcca.) This latter approach has been used

to identify and understand many representational properties in natural language

applications [169, 25, 329] and even in modelling the mouse visual cortex as an

artificial neural network [286]. Another recent technique uses a kernel based

approach to perform similarity comparisons [164].

58

https://github.com/google/svcca

2.6.3 Technical References

The preceding sections contain many useful pointers to techniques and associ-

ated open sourced code references. One additional reference of general inter-

est may be https://christophm.github.io/interpretable-ml-book/

a fully open sourced book on interpretable machine learning. This focuses

slightly more on more traditional interpretability methods, but has useful over-

lap with some of the techniques presented above and may suggest promising

open directions.

2.7 Doing More with Less Data

Supervised learning methods, and specific variants such as transfer learning and

multitask learning have been highly successful in training deep neural network

models. However, a significant limitation to their use, and thus the use of deep

learning, is the dependence on large amounts of labelled data. In many specialized

domains, such as medicine, collecting a large number of high quality, reliable

labels can be prohibitively expensive.

Luckily, in just the past few years, we’ve seen remarkable advances in meth-

ods that reduce this dependence, particularly self-supervision and semi-supervised

learning. These approaches still follow the paradigm of training a neural network

to map raw data instances to a specified label, but critically, these labels are not

collected separately, but automatically defined via a pretext task. For example, we

might take a dataset of images, rotate some of them, and then define the label

59

https://christophm.github.io/interpretable-ml-book/

Unlabelled Data
Instances

Labels from Pretext
Task (Rotation)

270੦ 180੦ 0੦

Training
180੦

Figure 2.12: Training neural networks with Self-Supervision. The figure illustrates
one example of a self-supervision setup. In self-supervision, we typically have a col-
lection of unlabelled data instances, in this case images. We define a pretext task, that
will automatically generate labels for the data instances. In this case, the pretext task
is rotation — we randomly rotate the images by some amount and label them by the
degree of rotation. During training, the neural network is given this rotated image
and must predict the degree of rotation. Doing so also requires the neural network
learn useful hidden representations of the image data in general, so after training with
self-supervision, this neural network can then be successfully and efficiently finetuned
on a downstream task.

as the degree of rotation, which is the prediction target for the neural network.

This enables the use of unlabelled data in training the deep neural network. In this

section, we cover both self-supervision and semi-supervised learning as well as

other methods such as data augmentation and denoising, all of which enable us

to do more with less data.

2.7.1 Self-Supervised Learning

In self-supervision, a pretext task is defined such that labels can be automatically

calculated directly from the raw data instances. For example, on images, we

60

could rotate the image by some amount, label it by how much it was rotated,

and train a neural network to predict the degree of rotation [91] — this setup

is illustrated in Figure 2.12. This pretext task is defined without needing any

labelling effort, but can be used to teach the network good representations. These

representations can then be used as is or maybe with a little additional data for

downstream problems. Arguably the biggest success of self-supervision has been

language modelling for sequential data and specifically natural language problems,

which we overviewed in Section 2.4.5. Below we outline some of the most

popular and successful self-supervision examples for both image and sequential

data. (A comprehensive list of self-supervision methods can also be found on

this page https://github.com/jason718/awesome-self-supervised-

learning.)

Self-Supervised Learning for Images

A recent, popular and simple self-supervised task for images is to predict image

rotations [91]. Each image instance is transformed with one of four possible rota-

tions and the deep learning model must classify the rotation correctly. Despite

its simplicity, multiple studies have shown its success in learning good repre-

sentations [368, 367, 161]. Another popular method examined in those studies

is exemplar [68], which proposes a self-supervision task relying on invariance to

image transformations. For example, we might take a source image of a cat, and

perform a sequence of transformations, such as rotation, adjusting contrast, flip-

ping the image horizontally, etc. We get multiple images of the cat by choosing

many such sequences, and train the neural network to recognize these all as the

same image.

61

https://github.com/jason718/awesome-self-supervised-learning
https://github.com/jason718/awesome-self-supervised-learning

Other methods look at using image patches as context to learn about the global

image structure and important features. For example, [65] defines a pretext

task where the relative locations of pairs of image patches must be determined,

while [227] teaches a neural network to solve jigsaw puzzles. This latter task

has been shown to be effective at large scales [96], with nice implementations

and benchmarking provided by https://github.com/facebookresearch/

fair_self_supervision_benchmark. A recent line of work has looked at

using mutual information inspired metrics as a way to provide supervision on

the relatedness of different image patches [122, 235, 14, 215], but these may be

more intricate to implement. Many of these mutual information based metrics

also rely on contrastive losses [42], which, at a high level, provides supervision to

the network by making representations of a pair of similar inputs more similar

than representations of a pair of different inputs. Very recently, a new self-

supervision method, SimCLR [41], uses this to achieve high performance (one

implementation at https://github.com/sthalles/SimCLR.)

Note that some of the image registration examples given in Section 2.4.3

are also examples of self-supervised learning, where some kind of domain

specific similarity function can be automatically computed to assess the qual-

ity of the output. Such approaches may be relevant to other domains, and

are useful to explore. A great set of open-sourced implementations of many

of self-supervision methods is provided by https://github.com/google/

revisiting-self-supervised.

62

https://github.com/facebookresearch/fair_self_supervision_benchmark
https://github.com/facebookresearch/fair_self_supervision_benchmark
https://github.com/sthalles/SimCLR
https://github.com/google/revisiting-self-supervised
https://github.com/google/revisiting-self-supervised

Self-Supervised Learning for Sequential (Natural Language) Data

While research on self-supervision techniques for images has been extremely

active, the strongest successes of this framework have arguably been with se-

quential data, particularly text and natural language. The sequential structure

immediately gives rise to effective self-supervision pretext tasks. Two dominant

classes of pretext tasks operate by either (i) using neighboring tokens of the

sequence as input context for predicting a target token (ii) taking in all tokens

up to a particular position and predicting the next token. The latter of these is

language modelling, which was overviewed in Section 2.4.5. The former is the

principle behind word embeddings.

Word embeddings have been critical to solving many natural language prob-

lems. Before the recent successes of full fledged transfer learning in language

(Section 2.5.1) this simple self-supervised paradigm was where knowledge reuse

was concentrated, and formed a highly important component of any deep learn-

ing system for natural language (sequential) data. From a scientific perspective,

learning word embeddings for sequential data has the potential to identify

previously unknown similarities in the data instances. It has already found

interesting uses in aiding with the automatic analysis of scientific texts, such as

drug name recognition systems [189], biomedical named entity recognition [105],

identifying important concepts in materials science [319] and even detecting

chemical-protein interactions [50].

The key fundamental ideas of word embeddings are captured in the word2vec

framework [213, 212], the original framework relying on either a Continuous-

Bag-of-Words (CBOW) neural network or a Skip-Gram neural network. Actually,

63

both of these models are less neural networks and more two simple matrix

multiplications, with the first matrix acting as a projection, and giving the desired

embedding. In CBOW, the context — defined as the neighborhood words — are

input, and the model must correctly identify the target output word. In Skip-

Gram, this is reversed, with the center word being input, and the context being

predicted. For example, given a sentence "There is a cat on the roof", with the

target word being cat, CBOW would take in the vector representations of (There,

is, a, on, the, roof) and output "cat", while Skip-Gram would roughly swap the

inputs and outputs. The simplicity of these methods may make them more

suitable for many tasks compared to language modelling. Two nice overviews of

the these methods are given by Introduction to Word Embeddings and word2vec,

and https://ruder.io/word-embeddings-1/. Other embedding methods

include [240, 178].

Self-Supervision Summary

In this section we have outlined many of the interesting developments in self-

supervised learning, a very successful way to make use of unlabelled data

to learn meaningful representations, either for analysis or other downstream

tasks. Self-supervision can be effectively used along with other techniques. For

example, in the language modelling application, we saw it used for transfer

learning (Section 2.5.1), where a deep learning model is first pretrained using

the language modelling self supervision objective, and then finetuned on the

target task of interest. In the following section, we will other ways of combining

self-supervision with labelled data.

64

https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://ruder.io/word-embeddings-1/

2.7.2 Semi-Supervised Learning

While collecting large labelled datasets can be prohibitively expensive, it is often

possible to collect a smaller amount of labelled data. When assembling a brand

new dataset, a typical situation is having a small amount of labelled data and a

(sometimes significantly) larger number of data instances with no labels. Semi-

supervised learning looks at precisely this setting, proposing techniques that enable

effective learning on labelled and unlabelled data. Below we overview some of

the popular methods for semi-supervised learning.

Self-Supervision with Semi-Supervised Learning

Following on from the previous section, one natural way to make use of the

unlabelled data is to use a self-supervised pretext task. To combine this with

the labelled data, we can design a neural network that has two different outputs

heads (exactly as in multitask learning, see Section 2.5.3), with one output head

being used for the labelled data, and the other for the self-supervised objective

on the unlabelled data. Importantly, this means that the features learned by the

neural network are shared between the labelled and unlabelled data, leading to

better representations. This simple approach has been shown to be very effective

[368, 367].

65

Self-Training (Bootstrapping)

Self-training, sometimes also referred to as bootstrapping or pseudo-labels, is an

iterative method where a deep neural network is first developed in a super-

vised fashion on the labelled data. This neural network is then used to provide

(pseudo) labels to the unlabelled data, which can then be used in conjunction

with the labelled data to train a new, more accurate neural network. This ap-

proach often works well and can even be repeated to get further improvements.

There are a couple of common details in implementation — often when adding

the neural network pseudo-labelled data, we only keep the most confidently

pseudo-labelled examples. These pseudo-labelled examples may also be used

for training with a different objective function compared to the labelled data.

One of the early papers proposing this method was [172], with a more recent

paper [353] demonstrating significant successes at large scale. Other variants,

including mean teacher [311], temporal ensembling [170] and the recent MixMatch

[28] also primarily use the self-training approach, but incorporate elements

of consistency (see below). There are nice open sourced implementations of

these methods, such as https://github.com/CuriousAI/mean-teacher

for mean teacher and https://github.com/google-research/mixmatch

and https://github.com/YU1ut/MixMatch-pytorch for MixMatch.

Enforcing Consistency (Smoothness)

An important theme in many semi-supervised methods has been to provide

supervision on the unlabelled data through enforcing consistency. If a human

was given two images A and B, where B was a slightly perturbed version of A

66

https://github.com/CuriousAI/mean-teacher
https://github.com/google-research/mixmatch
https://github.com/YU1ut/MixMatch-pytorch

(maybe blurred, maybe some pixels obscured or blacked out), they would give

these images the same label — consistency. We can also apply this principle to

provide feedback to our neural network on the unlabelled data, combining it

with the labelled data predictions as in multitask learning (Section 2.5.3) to form a

semi-supervised learning algorithm. A popular method on enforcing consistency

is virtual adversarial training [216], which enforces consistency across carefully

chosen image perturbations. Another paper, unsupervised data augmentation [352],

uses standard data augmentation techniques such as cutout [61] for images and

back translation for text [283] to perturb images and enforces consistency across

them. [367] uses consistency constraints along with other semi-supervised and

self-supervised techniques in its full algorithm.

Co-training

Another way to provide feedback on unlabelled data is to train two (many)

neural network models, each on a different view of the raw data. For example,

with text data, each model might see a different part of the input sentence. These

models can then be given feedback to be maximally consistent with each other,

or with a different model which sees all of the data, or even used for self-training,

with each different model providing pseudo labels on the instances it is most

confident on. This post https://ruder.io/semi-supervised/ gives a nice

overview of different co-training schemes, and [47, 246, 107] are some recent

papers implementing this in text and images.

67

https://ruder.io/semi-supervised/

Semi-Supervised Learning Summary

Semi-supervised learning is a powerful way to reduce the need for labelled data

and can significantly boost the efficacy of deep learning models. Semi-supervised

learning can be applied in any situation where a meaningful task can be created

on the unlabelled data. In this section we have overviewed some natural ways

to define such tasks, but there may be many creative alternatives depending on

the domain of interest. We hope the references will provide a helpful starting

point for implementation and further exploration!

2.7.3 Data Augmentation

As depicted in Figure 2.1, data augmentation is an important part of the deep learn-

ing workflow. Data augmentation refers to the process of artificially increasing

the size and diversity of the training data by applying a variety of transforma-

tions to the raw data instances. For example, if the raw instances were to consist

of images, we might artificially pad out the image borders and then perform an

off center (random) crop to give us the final augmented image instance. Aside

from increasing the size and diversity of the data, data augmentation offers the

additional benefit of encouraging the neural network to be robust to certain kinds

of common transformations of data instances. In this section, we overview some

of the most popular data augmentation techniques for image and sequential

data. These techniques will typically already be part of many open sourced

deep learning pipelines, or easy to invoke in any mainstream deep learning

software package. There are also some specific libraries written for augmen-

68

Figure 2.13: An illustration of the Mixup data augmentation technique. Image
source [54] The figure provides an example of the Mixup data augmentation method
— an image of a cat and an image of a dog are linearly combined, with 0.4 weight on
the cat and 0.6 weight on the dog, to give a new input image shown in the bottom with
a smoothed label of 0.4 weight on cat and 0.6 weight on dog. Mixup has been a very
popular and successful data augmentation method for image tasks.

tations, for example imgaug https://github.com/aleju/imgaug, nlpaug

https://github.com/makcedward/nlpaug and albumentations https://

github.com/albumentations-team/albumentations.

Data Augmentation for Image Data

Simple augmentations for image data consider transformations such as horizontal

flips or random crops (padding the image borders and taking an off center crop.)

Inspired by these simple methods are two very successful image augmentation

strategies, cutout [61], which removes a patch from the input image, and RICAP

[307], which combines patches from four different input image to create a new

image (with new label a combination of the original labels.) This somewhat

surprising latter technique of combining images has in fact shown to be very

successful in mixup [372], another data augmentation strategy where linear

69

https://github.com/aleju/imgaug
https://github.com/makcedward/nlpaug
https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations

combinations of images (instead of patches) are used. (This strategy has also been

combined with cutout in the recently proposed cutmix augmentation strategy

[363], with code https://github.com/clovaai/CutMix-PyTorch.)

Other useful augmentation strategies include TANDA [258] which learns a

model to compose data augmentations, the related randaugment [51], choosing a

random subset of different possible augmentations, population based augmenta-

tion [123] which randomly searches over different augmentation policies, [131]

applying color distortions to the image and the recently proposed augmix [120]

(code https://github.com/google-research/augmix.)

Data Augmentation for Sequence Data

Data augmentation for sequential data typically falls into either (i) directly modi-

fying the input sequence, or (ii) in the case of sequence to sequence tasks (Section

2.4.5), increasing the number of input-output sequences through noisy trans-

lation with the neural network. When directly modifying the input sequence,

common perturbations include randomly deleting a sequence token (comparable

to the masking approach used in [60]), swapping sets of sequence tokens, and

replacing a token with its synonym. This latter strategy is usually guided by

word embeddings [334] or contextualized word embeddings [157]. Examples of

combining these transformations are given by [340, 142], with code repositories

such as https://github.com/makcedward/nlpaug providing some simple

implementations.

The other dominant approach to data augmentation of sequences is using

70

https://github.com/clovaai/CutMix-PyTorch
https://github.com/google-research/augmix
https://github.com/makcedward/nlpaug

sequence-to-sequence models to generate new data instances, known as back-

translation [283, 71]. Concretely, suppose we have a model to translate from

English sequences to German sequences. We can take the output German se-

quence and use existing tools/noisy heuristics to translate it back to English.

This gives us an additional English-German sequence pair.

2.7.4 Data (Image) Denoising

When measuring and collecting high dimensional data, noise can easily be

introduced to the raw instances, be they images or single-cell data. As a result

there has been significant interest and development of deep learning techniques

to denoise the data. Many of these recent methods work even without paired

noisy and clean data samples, and many be applicable in a broad range of

settings. For instance, Noise2Noise [177] uses a U-net neural network architecture

to denoise images given multiple noisy copies. The recent Noise2Self [23] (with

code: https://github.com/czbiohub/noise2self) frames denoising as

a self-supervision problem, using different subsets of features (with assumed

independent noise properties) to perform denoising, applying it to both images

as well as other high dimensional data.

2.8 Advanced Deep Learning Methods

The methods and tasks overviewed in the survey so far — supervised learning,

fundamental neural network architectures (and their many different tasks), dif-

71

https://github.com/czbiohub/noise2self

ferent paradigms like transfer learning as well as ways to reduce labelled data

dependence such as self-supervision and semi-supervised learning — are an

excellent set of first approaches for any problem amenable to deep learning. In

most such problems, these approaches will also suffice in finding a good solution.

Occasionally however, it might be useful to turn to more advanced methods

in deep learning, specifically generative models and reinforcement learning. We term

these methods advanced as they are often more intricate to implement, and may

require specific properties of the problem to be useful, for example an excellent

environment model/simulator for reinforcement learning. We provide a brief

overview of these methods below.

2.8.1 Generative Models

At a high level, generative modelling has two fundamental goals. Firstly, it seeks

to model and enable sampling from high dimensional data distributions, such as

natural images. Secondly, it looks to learn low(er) dimensional latent encodings

of the data that capture key properties of interest.

To achieve the first goal, generative models take samples of the high dimen-

sional distribution as input, for example, images of human faces, and learn

some task directly on these data instances (e.g. encoding and then decoding

the instance or learning to generate synthetic instances indistinguishable from

the given data samples or generating values per-pixel using neighboring pixels

as context). If generative modelling achieved perfect success at this first goal, it

would make it possible to continuously sample ‘free’ data instances! Such perfect

72

Figure 2.14: Human faces generated from scratch by StyleGAN2. Image source [144]
The figure shows multiple human face samples from StyleGAN2 [144]. While perfectly
modelling and capture full diversity of complex data distributions like human faces
remains challenging, the quality and fidelity of samples from recent generative models
is very high.

success is extremely challenging, but the past few years has seen enormous

progress in the diversity and fidelity of samples from the data distribution.

For the second goal, learning latent encodings of the data with different

encoding dimensions correspond to meaningful factors of variation, having an

explicit encoder-decoder structure in the model can be helpful in encouraging

learning such representations. This is the default structure for certain kinds of

generative models such as variational autoencoders [156] but has also been adopted

into other models, such as BigBiGAN [66], a type of generative adversarial network.

In the following sections we overview some of these main types of generative

models.

Generative Adversarial Networks

Arguably the most well known of all different types of generative models, Gen-

erative Adversarial Networks, commonly known as GANs, consist of two neural

networks, a generator and a discriminator, which are pitted in a game against each

other. The generator takes as input a random noise vector and tries to output sam-

ples that look like the data distribution (e.g. synthesize images of peoples faces),

73

while the discriminator tries to distinguish between true samples of the data,

and those synthesized by the generator. First proposed in [93], GANs have been

an exceptionally popular research area, with the most recent variations, such

as BigGAN [32] (code: https://github.com/ajbrock/BigGAN-PyTorch),

BigBiGAN [66] and StyleGAN(2) [144] (code: https://github.com/NVlabs/

stylegan2) able to generate incredibly realistic images.

Unconditional GANs vs Conditional GANs The examples given above are

all unconditional GANs, where the data is generated with only a random noise

vector as input. A popular and highly useful variant are conditional GANs,

where generation is conditioned on additional information, such as a label, or a

‘source’ image, which might be translated to a different style. Examples include

pix2pix [139] (code: https://phillipi.github.io/pix2pix/), cycleGAN

[379], and applications of these to videos [38].

GANs have found many scientific applications, from performing data aug-

mentation in medical image settings [90] to protein generation [265]. The ‘ad-

versarial’ loss objective of GANs can make them somewhat tricky to train,

and useful implementation advice is given in https://www.fast.ai/2019/

05/03/decrappify/, and (for conditional GANs) is included in https:

//github.com/jantic/DeOldify.

Variational Autoencoders

Another type of generative model is given by the variational autoencoder, first

proposed by [156]. VAEs have an encoder decoder structure, and thus an explicit

74

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan2
https://phillipi.github.io/pix2pix/
https://www.fast.ai/2019/05/03/decrappify/
https://www.fast.ai/2019/05/03/decrappify/
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify

latent encoding, which can capture useful properties of the data distribution.

They also enable estimation of the likelihood of a sampled datapoint — the proba-

bility of its occurrence in the data distribution. VAEs have also been extremely

popular, with many variations and extensions proposed [296, 143, 153, 99]. Be-

cause of the explicit latent encoding and the ability to estimate likelihoods, they

have also found use cases in various scientific settings, such as for modelling

gene expression in single-cell RNA sequencing [196].

Autoregressive Models

Yet another type of generative model is autoregressive models, which take in inputs

sequentially and use those to generate an appropriate output. For instance, such

models may take in a sequence of pixel values (some of them generated at a

previous timestep) and use these to generate a new pixel value for a specific

spatial location. Autoregressive models such as PixelRNN [234], PixelCNN (and

variants) [322, 275] and the recently proposed VQ-VAE(2) [260] (code: https://

github.com/rosinality/vq-vae-2-pytorch) offer very high generation

quality.

Flow Models

A relatively new class of generative models, flow models, looks at perform-

ing generation using a sequence of invertible transformations, which enables

the computation of exact likelihoods. First proposed in [63, 64], performing

an expressive but tractable sequence of invertible transformations is an ac-

75

https://github.com/rosinality/vq-vae-2-pytorch
https://github.com/rosinality/vq-vae-2-pytorch

tive area of research [155, 124]. A nice introduction to normalizing flows

is given in this short video tutorial https://www.youtube.com/watch?v=

i7LjDvsLWCg&feature=youtu.be.

2.8.2 Reinforcement Learning

Reinforcement learning has quite a different framing to the techniques and

methods introduced so far, aiming to solve the sequential decision making problem.

It is typically introduced with the notions of an environment and an agent. The

agent can take a sequence of actions in the environment, each of which affect the

environment state in some way, and also result in possible rewards (feedback) —

‘positive’ for good sequences of actions resulting in a ‘good’ state and ‘negative’

for bad sequences of actions leading to a ‘bad’ state. For example, in a game

like chess, the state is the current position of all pieces in play (the game state),

an action the moving of a piece, with a good sequence of actions resulting in a

win, a bad sequence of actions in a loss and the reward might be one or zero

depending on having a win or loss respectively.

With this being the setup, the goal of reinforcement learning is to learn,

through interaction with the environment, good sequences of actions (typically

referred to as a policy). Unlike supervised learning, feedback (the reward) is

typically given only after performing the entire sequence of actions. Specifically,

feedback is sparse and time delayed. There are a variety of different reinforcement

learning use cases depending on the specifics of the problem.

76

https://www.youtube.com/watch?v=i7LjDvsLWCg&feature=youtu.be
https://www.youtube.com/watch?v=i7LjDvsLWCg&feature=youtu.be

RL with an Environment Model/Simulator

Some of the most striking results with RL, such as AlphaGoZero [290], critically

use an environment model/simulator. In such a setting, a variety of learn-

ing algorithms [338, 280, 186] (some code: https://github.com/openai/

baselines) can help the agent learn a good sequence of actions, often through

simultaneously learning a value function — a function that determines whether a

particular environment state is beneficial or not. Because the benefit of an envi-

ronment state may depend on the entire sequence of actions (some still in the

future), RL is very important in properly assessing the value of the environment

state, through implicitly accounting for possible future actions. Combining value

functions with traditional search algorithms has been a very powerful way to

use RL, and may be broadly applicable to many domains.

Specifically, if developing a solution to the problem is multistep in nature,

with even a noisy validation possible in simulation, using RL to learn a good

value function and combining that with search algorithms may lead to discover-

ing new and more effective parts of the search space. Approaches like these have

gained traction in considering RL applications to fundamental problems in both

computer systems, with [204] providing a survey and a new benchmark, and ma-

chine learning systems [241], in designing task-specific neural network models.

The latter has recently also resulted in scientific use cases — designing neural

networks to emulate complex processes across astronomy, chemistry, physics,

climate modelling and others [145].

77

https://github.com/openai/baselines
https://github.com/openai/baselines

RL without Simulators

In other settings, we don’t have access to an environment model/simulator, and

may simply have records of sequences of actions (and the ensuing states and

rewards). This is the offline setting. In this case, we may still try to teach an

agent a good policy, using the observed sequences of actions/states/rewards

in conjunction with off-policy methods [287, 249, 192], but thorough validation

and evaluation can be challenging. Evaluation in off-policy settings often uses

a statistical technique known as off-policy policy evaluation (example algorithms

include [245, 191]). In robotics, reinforcement learning literature has looked at

performing transfer learning between policies learned in simulation and policies

learned on real data [273]. A thorough overview of deep reinforcement learning

is given in http://rail.eecs.berkeley.edu/deeprlcourse/.

2.9 Implementation Tips

In this section, we highlight some useful tips for implementing these models.

Explore Your Data Before starting with steps in the learning phase (see Figure

2.1), make sure to perform a thorough exploration of your data. What are the

results of simple dimensionality reduction methods or clustering? Are the labels

reliable? Is there imbalance amongst different classes? Are different subpopula-

tions appropriately represented?

78

http://rail.eecs.berkeley.edu/deeprlcourse/

Try Simple Methods When starting off with a completely new problem, it is

useful to try the simplest version possible. (It might even be worthwhile starting

with no learning at all — how does the naive majority baseline perform? For

datasets with large imbalances, it may be quite strong!) If the dataset is very

large, is there some smaller subsampled/downscaled version that can be used

for faster preliminary testing? What is the simplest model that might work well?

How does a majority baseline perform? (This ties in settings where the data has

class imbalance.) Does the model (as expected) overfit to very small subsets of

the data?

Where possible, start with well tested models/tasks/methods With the

plethora of standard models (many of them pretrained), data augmentation,

and optimization methods readily available (Section 2.3), most new problems

will be amenable to some standard set of these choices. Start with this! Debug-

ging the dataset and objective function associated with a new problem at the

same time as debugging the neural network model, task choice, optimization

algorithm, etc is very challenging.

Additionally, many of the standard model/task/method choices are very

well benchmarked, and exploring performance in these settings is an excellent

first step in understanding the inherent challenges of the new problem. Wherever

possible, the easiest way to get starting with the learning phase is to clone an

appropriate github repository that has the models and training code needed,

and make the minimal edits needed to work with the new dataset and objective

function.

79

First Steps in Debugging Poor Performance Having put together an end-to-

end system, you observe that it is not performing well on the validation data.

What is the reason? Before getting into more subtle design questions on hy-

perparameter choice (below), some first things to look at might be (i) Is the

model overfitting? If so, more regularization, data augmentation, early stopping,

smaller model may help. (ii) Is there a distribution shift between the training and

validation data? (iii) Is the model underfitting? If so, check the optimization

process by seeing if the model overfits when trained on a smaller subset of the training

data. Test out a simpler task. Check for noise in the labels or data instances

and for distribution shift. (iv) Look at the instances on which the model makes

errors. Is there some pattern? For imbalanced datasets, loss function reweight-

ing or more augmentation on the rarer classes can help. (v) How stable is the

model performance across multiple random reruns? (vi) What are gradient and

intermediate representation norms through the training process?

Which hyperparameters matter most? A big challenge in improving deep

learning performance is the multitude of hyperparameters it is possible to

change. In practice, some of the simplest hyperparameters often affect per-

formance the most, such as learning rate and learning rate schedule. Picking an

optimizer with subtleties such as weight decay correctly implemented can also

be very important, see this excellent article on a very popular optimizer, AdamW

https://www.fast.ai/2018/07/02/adam-weight-decay/. It might also

be very useful to visualize the contributions to total loss from the main objective

function vs different regularizers such as weight decay.

Other hyperparameters that can be explored include batch size and data

80

https://www.fast.ai/2018/07/02/adam-weight-decay/

preprocessing, though if standard setups are used for these, varying learning

rate related hyperparameters is likely to be the first most useful aspect to explore.

To test different hyperparameter settings, it can be very useful to cross-validate:

hold out a portion of the training data, train different hyperparameter settings

on the remaining data, pick whichever hyperparameter setting does best when

evaluated on the held out data, and then finally retrain that hyperparameter

setting on the full training dataset.

Validate your model thoroughly! Deep learning models are notorious for rely-

ing on spurious correlations in the data to perform their predictions [15, 228, 346].

By spurious correlation, we mean features in the data instances that happen to

co-occur with a specific label, but will not result in a robust, generalizable model.

For example, suppose we have data from different chest x-ray machines (cor-

responding to different hospitals) that we put together to train a deep learning

model. It might be the case that one of these machines, so happens to scan many

sick patients. The deep learning model might then implicitly learn about the

chest x-ray machine instead of the features of the illness. One of the best tests for

ensuring the model is learning in a generalizable way is to evaluate the model

on data collected separately from the training data, which will introduce some

natural distribution shift and provide a more robust estimate of its accuracy. Some

recent interesting papers exploring these questions include [119, 261].

Relatedly, deep neural networks will also pick up on any biases in the data,

for example, learning to pay attention to gender (a sensitive attribute) when

made to predict age due to class imbalances leading to spurious correlations.

This can pose significant challenges for generalizable conclusions in scientific

81

settings where data may be collected from one population, but the predictions

must be accurate across all populations. It is therefore important to perform

postprocessing analysis on the model representations to identify the presence of

such biases. A line of active research studies how to debias these representations

[9, 337].

Implementation References Some of the general design considerations when

coming to implementation (along with factors affecting larger scale deploy-

ment, not explored in this survey) are discussed in this overview https://

github.com/chiphuyen/machine-learning-systems-design/blob/master/

build/build1/consolidated.pdf.

For specific points on training and debugging deep learning systems,

two excellent guides are given by http://josh-tobin.com/assets/

pdf/troubleshooting-deep-neural-networks-01-19.pdf and http:

//karpathy.github.io/2019/04/25/recipe/.

2.10 Conclusion

In this survey chapter, we have overviewed many of the highly successful deep

learning models, tasks and methodologies, with references to the remarkably

comprehensive open-sourced resources developed by the community. We hope

it serves to set the research results of the subsequent chapters in context and

helps inspire exploration of new directions and applications of these versatile

techniques.

82

https://github.com/chiphuyen/machine-learning-systems-design/blob/master/build/build1/consolidated.pdf
https://github.com/chiphuyen/machine-learning-systems-design/blob/master/build/build1/consolidated.pdf
https://github.com/chiphuyen/machine-learning-systems-design/blob/master/build/build1/consolidated.pdf
http://josh-tobin.com/assets/pdf/troubleshooting-deep-neural-networks-01-19.pdf
http://josh-tobin.com/assets/pdf/troubleshooting-deep-neural-networks-01-19.pdf
http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/

Part II

Insights on Neural Network Hidden

Representations

83

CHAPTER 3

QUANTITATIVE TECHNIQUES FOR INSIGHTS ON DEEP

REPRESENTATIONS

In the following two chapters we introduce quantitative techniques to study the

hidden representations of deep neural networks. While neural network hidden

representations contain the bulk of the parameters, computation and learning,

their complexity and lack of any interpretable mapping makes them challenging

to study. One basic question is being able to meaningfully compare hidden

representations across neural networks, which, despite being fundamental, has

subtlety on how a hidden representation is even defined, and addressing the

lack of any meaningful interpretable (or comparable) mapping of representations

across neural networks

3.1 Overview of SVCCA and Analysis Insights

We begin by introducing a new approach based on an analysis of each neu-

ron’s activation vector – the scalar outputs it emits on input datapoints. With

this interpretation of neurons as vectors (and layers as subspaces, spanned by

neurons), we introduce SVCCA, Singular Vector Canonical Correlation Analysis,

an amalgamation of Singular Value Decomposition and Canonical Correlation

Analysis (CCA) [129], as a powerful method for analyzing deep representations.

The main contributions resulting from the introduction of SVCCA are the

following:

84

1. We ask: is the dimensionality of a layer’s learned representation the same

as the number of neurons in the layer? Answer: No. We show that trained

networks perform equally well with a number of directions just a fraction

of the number of neurons with no additional training, provided they are

carefully chosen with SVCCA (Section 3.2.1). We explore the consequences

for model compression (Section 3.4.4).

2. We ask: what do deep representation learning dynamics look like? Answer:

Networks broadly converge bottom up. Using SVCCA, we compare layers

across time and find they solidify from the bottom up. This suggests a

simple, computationally more efficient method of training networks, Freeze

Training, where lower layers are sequentially frozen after a certain number

of timesteps (Sections 3.4.1, 3.4.2).

3. We develop a method based on the discrete Fourier transform which greatly

speeds up the application of SVCCA to convolutional neural networks

(Section 3.3).

4. We also explore an interpretability question, of when an architecture be-

comes sensitive to different classes. We find that SVCCA captures the

semantics of different classes, with similar classes having similar sensitivi-

ties, and vice versa. (Section 3.4.3).

Experimental Details Most of our experiments are performed on CIFAR-10

(augmented with random translations). The main architectures we use are a

convolutional network and a residual network. To produce a few figures, we also

use a toy regression task: training a four hidden layer fully connected network

with 1D input and 4D output, to regress on four different simple functions.

85

index over dataset index over dataset index over dataset

Neurons with highest activations
(net1, net2)

Top SVD Directions
(net1, net2)

Top SVCCA directions
(net1, net2)

200
200
200
200

4

1

network

(a) (b) (c) (d)

Figure 3.1: To demonstrate SVCCA, we consider a toy regression task (regression target
as in Figure 3.3). (a) We train two networks with four fully connected hidden layers
starting from different random initializations, and examine the representation learned
by the penultimate (shaded) layer in each network. (b) The neurons with the highest
activations in net 1 (maroon) and in net 2 (green). The x-axis indexes over the dataset: in
our formulation, the representation of a neuron is simply its value over a dataset. (c) The
SVD directions — i.e. the directions of maximal variance — for each network. (d) The
top SVCCA directions. We see that each pair of maroon/green lines (starting from the
top) are almost visually identical (up to a sign). Thus, although looking at just neurons
(b) seems to indicate that the networks learn very different representations, looking at
the SVCCA subspace (d) shows that the information in the representations are (up to a
sign) nearly identical.

3.2 Measuring Representations in Neural Networks

Our goal in this paper is to analyze and interpret the representations learned by

neural networks. The critical question from which our investigation departs is:

how should we define the representation of a neuron? Consider that a neuron

at a particular layer in a network computes a real-valued function over the

network’s input domain. In other words, if we had a lookup table of all possible

input→ output mappings for a neuron, it would be a complete portrayal of that

neuron’s functional form.

However, such infinite tables are not only practically infeasible, but are also

problematic to process into a set of conclusions. Our primary interest is not in

86

the neuron’s response to random data, but rather in how it represents features of

a specific dataset (e.g. natural images). Therefore, in this study we take a neuron’s

representation to be its set of responses over a finite set of inputs — those drawn from

some training or validation set.

More concretely, for a given dataset X = {x1, · · · xm} and a neuron i on layer l,

zzzl
i, we define zzzl

i to be the vector of outputs on X, i.e.

zzzl
i = (zzzl

i(x1), · · · , zzzl
i(xm))

Note that this is a different vector from the often-considered vector of the “rep-

resentation at a layer of a single input.” Here zzzl
i is a single neuron’s response

over the entire dataset, not an entire layer’s response for a single input. In this

view, a neuron’s representation can be thought of as a single vector in a high-

dimensional space. Broadening our view from a single neuron to the collection

of neurons in a layer, the layer can be thought of as the set of neuron vectors

contained within that layer. This set of vectors will span some subspace. To

summarize:

Considered over a dataset X with m examples, a neuron is a vector in Rm.

A layer is the subspace of Rm spanned by its neurons’ vectors.

Within this formalism, we introduce Singular Vector Canonical Correlation

Analysis (SVCCA) as a method for analysing representations. SVCCA proceeds

as follows:

• Input: SVCCA takes as input two (not necessarily different) sets of neurons

(typically layers of a network) l1 = {zzzl1
1 , ..., zzz

l1
m1} and l2 = {zzzl2

1 , ..., zzz
l2
m2}

87

• Step 1 First SVCCA performs a singular value decomposition of each

subspace to get sub-subspaces l′1 ⊂ l1, l′2 ⊂ l2 which comprise of the most

important directions of the original subspaces l1, l2. In general we take

enough directions to explain 99% of variance in the subspace. This is

especially important in neural network representations, where as we will

show many low variance directions (neurons) are primarily noise.

• Step 2 Second, compute the Canonical Correlation similarity ([129]) of l′1, l
′
2:

linearly transform l′1, l
′
2 to be as aligned as possible and compute correlation

coefficients. In particular, given the output of step 1, l′1 = {zzz′l11 , ..., zzz
′l1
m′1
}, l′2 =

{zzz′l21 , ..., zzz
′l2
m′2
}, CCA linearly transforms these subspaces l̃1 = WXl′1, l̃2 = WY l′2

such as to maximize the correlations corrs = {ρ1, . . . ρmin(m′1,m
′
2)} between the

transformed subspaces.

• Output: With these steps, SVCCA outputs pairs of aligned directions,

(z̃zzl1
i , z̃zz

l2
i) and how well they correlate, ρi. Step 1 also produces intermediate

output in the form of the top singular values and directions.

For a more detailed description of each step, see the Appendix. SVCCA can

be used to analyse any two sets of neurons. In our experiments, we utilize this

flexibility to compare representations across different random initializations,

architectures, timesteps during training, and specific classes and layers.

Figure 3.1 shows a simple, intuitive demonstration of SVCCA. We train a

small network on a toy regression task and show each step of SVCCA, along

with the resulting very similar representations. SVCCA is able to find hidden

similarities in the representations.

88

3.2.1 Distributed Representations

An important property of SVCCA is that it is truly a subspace method: both

SVD and CCA work with span(zzz1, . . . , zzzm) instead of being axis aligned to the zzzi

directions. SVD finds singular vectors zzz′i =
∑m

j=1 si jzzz j, and the subsequent CCA

finds a linear transform W, giving orthogonal canonically correlated directions

{z̃zz1, . . . , z̃zzm} = {
∑m

j=1 w1 jzzz′j, . . . ,
∑m

j=1 wm jzzz′j}. In other words, SVCCA has no prefer-

ence for representations that are neuron (axes) aligned.

If representations are distributed across many dimensions, then this is a

desirable property of a representation analysis method. Previous studies have

reported that representations may be more complex than either fully distributed

or axis-aligned [306, 183] but this question remains open.

We use SVCCA as a tool to probe the nature of representations via two

experiments:

(a) We find that the subspace directions found by SVCCA are disproportion-

ately important to the representation learned by a layer, relative to neuron-

aligned directions.

(b) We show that at least some of these directions are distributed across many

neurons.

Experiments for (a), (b) are shown in Figure 3.2 as (a), (b) respectively. For

both experiments, we first acquire two different representations, l1, l2, for a layer

l by training two different random initializations of a convolutional network on

CIFAR-10. We then apply SVCCA to l1 and l2 to get directions {z̃zzl1
1 , ..., z̃zz

l1
m} and

89

0 100 200 300 400 500

Number of directions

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

CIFAR10: Accuracy with SVCCA directions
 and random neurons

p2 (4096 neurons) SVCCA
p2 max acts neurons
p2 random neurons
fc1 (512 neurons) SVCCA
fc1 random neurons
fc2 (256 neurons) SVCCA
fc2 max acts neurons

0 10 20 30 40 50

Number of directions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

CIFAR10 acc vs neurons used for SVCCA dirns

SVCCA fc1 (512 neurons)

SVCCA p2 (4096 neurons)

50 neurons for fc1

150 neurons for p2

300 neurons for p2

100 neurons for fc1

(a) (b)Figure 3.2: Demonstration of (a) disproportionate importance of SVCCA directions,
and (b) distributed nature of some of these directions. For both panes, we first find
the top k SVCCA directions by training two conv nets on CIFAR-10 and comparing
corresponding layers. (a) We project the output of the top three layers, pool1, fc1, fc2,
onto this top-k subspace. We see accuracy rises rapidly with increasing k, with even
k � num neurons giving reasonable performance, with no retraining. Baselines of random
k neuron subspaces and max activation neurons require larger k to perform as well.
(b): after projecting onto top k subspace (like left), dotted lines then project again onto
m neurons, chosen to correspond highly to the top k-SVCCA subspace. Many more
neurons are needed than k for better performance, suggesting distributedness of SVCCA
directions.

{z̃zzl2
1 , ..., z̃zz

l2
m}, ordered according to importance by SVCCA, with each z̃zzli

j being a

linear combination of the original neurons, i.e. z̃zzli
j =

∑m
r=1 α

(li)
jr zzzli

r .

For different values of k < m, we can then restrict layer li’s output to lie in the

subspace of span(z̃zzli
1, . . . , z̃zz

li
k), the most useful k-dimensional subspace as found by

SVCCA, done by projecting each neuron into this k dimensional space.

We find — somewhat surprisingly — that very few SVCCA directions are

required for the network to perform the task well. As shown in Figure 3.2(a),

for a network trained on CIFAR-10, the first 25 dimensions provide nearly the

same accuracy as using all 512 dimensions of a fully connected layer with 512

neurons. The accuracy curve rises rapidly with the first few SVCCA directions,

90

and plateaus quickly afterwards, for k � m. This suggests that the useful

information contained in m neurons is well summarized by the subspace formed

by the top k SVCCA directions. Two baselines for comparison are picking random

and maximum activation neuron aligned subspaces and projecting outputs onto

these. Both of these baselines require far more directions (in this case: neurons)

before matching the accuracy achieved by the SVCCA directions. These results

also suggest approaches to model compression, which are explored in more

detail in Section 3.4.4.

Figure 3.2(b) next demonstrates that these useful SVCCA directions are at

least somewhat distributed over neurons rather than axis-aligned. First, the

top k SVCCA directions are picked and the representation is projected onto

this subspace. Next, the representation is further projected onto m neurons,

where the m are chosen as those most important to the SVCCA directions. The

resulting accuracy is plotted for different choices of k (given by x-axis) and

different choices of m (different lines). That, for example, keeping even 100 fc1

neurons (dashed green line) cannot maintain the accuracy of the first 20 SVCCA

directions (solid green line at x-axis 20) suggests that those 20 SVCCA directions

are distributed across 5 or more neurons each, on average. Figure 3.3 shows a

further demonstration of the effect on the output of projecting onto top SVCCA

directions, here for the toy regression case.

Why the two step SV + CCA method is needed. Both SVD and CCA have

important properties for analysing network representations and SVCCA conse-

quently benefits greatly from being a two step method. CCA is invariant to affine

transformations, enabling comparisons without natural alignment (e.g. different

91

0 50000 100000 150000 200000
4

3

2

1

0

1

2

3

4

Original output
 using 200 directions

0 50000 100000 150000 200000

Projection on top
 02 SVCCA directions

0 50000 100000 150000 200000

Projection on top
 06 SVCCA directions

0 50000 100000 150000 200000

Projection on top
 15 SVCCA directions

0 50000 100000 150000 200000

Projection on top
 30 SVCCA directions

Figure 3.3: The effect on the output of a latent representation being projected onto
top SVCCA directions in the toy regression task. Representations of the penultimate
layer are projected onto 2, 6, 15, 30 top SVCCA directions (from second pane). By 30, the
output looks very similar to the full 200 neuron output (left).

architectures, Section 3.4.4). See Appendix A.2 for proofs and a demonstrative

figure. While CCA is a powerful method, it also suffers from certain shortcom-

ings, particularly in determining how many directions were important to the

original space X, which is the strength of SVD. See Appendix for an example

where naive CCA performs badly. Both the SVD and CCA steps are critical to

the analysis of learning dynamics in Section 3.4.1.

3.3 Scaling SVCCA for Convolutional Layers

Applying SVCCA to convolutional layers can be done in two natural ways:

(1) Same layer comparisons: If X,Y are the same layer (at different timesteps or

across random initializations) receiving the same input we can concatenate

along the pixel (height h, width w) coordinates to form a vector: a conv layer

h × w × c maps to c vectors, each of dimension hwd, where d is the number

of datapoints. This is a natural choice because neurons at different pixel

coordinates see different image data patches to each other. When X,Y are

two versions of the same layer, these c different views correspond perfectly.

92

(2) Different layer comparisons: When X,Y are not the same layer, the image

patches seen by different neurons have no natural correspondence. But we

can flatten an h × w × c conv into hwc neurons, each of dimension d. This

approach is valid for convs in different networks or at different depths.

3.3.1 Scaling SVCCA with Discrete Fourier Transforms

Applying SVCCA to convolutions introduces a computational challenge: the

number of neurons (h × w × c) in convolutional layers, especially early ones, is

very large, making SVCCA prohibitively expensive due to the large matrices

involved. Luckily the problem of approximate dimensionality reduction of large

matrices is well studied, and efficient algorithms exist, e.g. [106].

For convolutional layers however, we can avoid dimensionality reduction and

perform exact SVCCA, even for large networks. This is achieved by preprocessing

each channel with a Discrete Fourier Transform (which preserves CCA due

to invariances, see Appendix), causing all (covariance) matrices to be block-

diagonal. This allows all matrix operations to be performed block by block, and

only over the diagonal blocks, vastly reducing computation. We show:

Theorem 1. Suppose we have a translation invariant (image) dataset X and convolu-

tional layers l1, l2. Letting DFT (li) denote the discrete fourier transform applied to each

channel of li, the covariance cov(DFT (l1),DFT (l2)) is block diagonal, with blocks of size

c × c.

We make only two assumptions: 1) all layers below l1, l2 are either conv or

pooling layers with circular boundary conditions (translation equivariance) 2)

93

The dataset X has all translations of the images Xi. This is necessary in the proof

for certain symmetries in neuron activations, but these symmetries typically exist

in natural images even without translation invariance, as shown in Figure App.2

in the Appendix. Below are key statements, with proofs in Appendix.

Say a single channel image dataset X of images is translation invariant if for any

(wlog n×n) image Xi ∈ X, with pixel values {zzz11, ...zzznn}, X(a,b)
i = {zzzσa(1)σb(1), ...zzzσa(n)σb(n)}

is also in X, for all 0 ≤ a, b ≤ n − 1, where σa(i) = a + i mod n (and similarly for b).

For a multiple channel image Xi, an (a, b) translation is an (a, b) height/width

shift on every channel separately. X is then translation invariant as above.

To prove Theorem 1, we first show another theorem:

Theorem 2. Given a translation invariant dataset X, and a convolutional layer l with

channels {c1, . . . ck} applied to X

(a) the DFT of ci, FcFT has diagonal covariance matrix (with itself).

(b) the DFT of ci, c j, FciFT , Fc jFT have diagonal covariance with each other.

Finally, both of these theorems rely on properties of circulant matrices and

their DFTs:

Theorem 3. The covariance matrix of ci applied to translation invariant X is circulant

and block circulant.

Theorem 4. The DFT of a circulant matrix is diagonal.

94

3.4 Applications of SVCCA

3.4.1 Learning Dynamics with SVCCA

We can use SVCCA as a window into learning dynamics by comparing the repre-

sentation at a layer at different points during training to its final representation.

Furthermore, as the SVCCA computations are relatively cheap to compute com-

pared to methods that require training an auxiliary network for each comparison

[7, 183], we can compare all layers during training at all timesteps to all layers at

the final time step, producing a rich view into the learning process.

The outputs of SVCCA are the aligned directions (x̃i, ỹi), how well they align,

ρi, as well as intermediate output from the first step, of singular values and

directions, λ(i)
X , x

′(i), λ(j)
Y , y

′(j). We condense these outputs into a single value, the

SVCCA similarity ρ̄, that encapsulates how well the representations of two layers

are aligned with each other,

ρ̄ =
1

min (m1,m2)

∑
i

ρi, (3.1)

where min (m1,m2) is the size of the smaller of the two layers being compared.

The SVCCA similarity ρ̄ is the average correlation across aligned directions, and

is a direct multidimensional analogue of Pearson correlation.

The SVCCA similarity for all pairs of layers, and all time steps, is shown in

Figure 3.4 for a convnet and a resnet architecture trained on CIFAR10.

95

la
ye

r
(d

ur
in

g
tr

ai
ni

ng
)

layer (end of training)

C
on

vn
et

, C
IF

A
R

-1
0

R
es

ne
t,

 C
IF

A
R

-1
0

la
ye

r
(d

ur
in

g
tr

ai
ni

ng
)

layer (end of training) layer (end of training) layer (end of training)

Weighted SVCCA scale

0% trained 35% trained 75% trained 100% trained

Figure 3.4: Learning dynamics plots for conv (top) and res (bottom) nets trained on
CIFAR-10. Each pane is a matrix of size layers × layers, with each entry showing the
SVCCA similarity ρ̄ between the two layers. Note that learning broadly happens ‘bottom
up’ – layers closer to the input seem to solidify into their final representations with the
exception of the very top layers. Per layer plots are included in the Appendix. Other
patterns are also visible – batch norm layers maintain nearly perfect similarity to the
layer preceding them due to scaling invariance (with a slight reduction since batch norm
changes the SVD directions which capture 99% of the variance). In the resnet plot, we
see a stripe like pattern due to skip connections inducing high similarities to previous
layers.

3.4.2 Freeze Training

Observing in Figure 3.4 that networks broadly converge from the bottom up,

we propose a training method where we successively freeze lower layers during

training, only updating higher and higher layers, saving all computation needed

for deriving gradients and updating in lower layers.

We apply this method to convolutional and residual networks trained on

CIFAR-10, Figure 3.5, using a linear freezing regime: in the convolutional net-

work, each layer is frozen at a fraction (layer number/total layers) of total training

96

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR10 Conv Freeze Training

test acc base

test acc freeze

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.70

0.75

0.80

0.85

0.90
CIFAR10 Resnet Freeze Training

test acc base

 test acc freeze

Figure 3.5: Freeze Training reduces training cost and improves generalization. We
apply Freeze Training to a convolutional network on CIFAR-10 and a residual network
on CIFAR-10. As shown by the grey dotted lines (which indicate the timestep at which
another layer is frozen), both networks have a ‘linear’ freezing regime: for the convo-
lutional network, we freeze individual layers at evenly spaced timesteps throughout
training. For the residual network, we freeze entire residual blocks at each freeze step.
The curves were averaged over ten runs.

time, while for resnets, each residual block is frozen at a fraction (block num-

ber/total blocks). The vertical grey dotted lines show which steps have another

set of layers frozen. Aside from saving computation, Freeze Training appears to

actively help generalization accuracy, like early stopping but with different layers

requiring different stopping points.

3.4.3 Interpreting Representations: when are classes learned?

We also can use SVCCA to compare how correlated representations in each layer

are with the logits of each class in order to measure how knowledge about the

target evolves throughout the network. In Figure 3.6 we apply the DFT CCA

technique on the Imagenet Resnet [117]. We take five different classes and for

different layers in the network, compute the DFT CCA similarity between the

logit of that class and the network layer. The results successfully reflect semantic

aspects of the classes: the firetruck class sensitivity line is clearly distinct from

97

0 10 20 30 40 50 60 70 80

Layer Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
C

A
 S

im
ila

ri
ty

 w
it

h
 C

la
ss

CCA Similarity (using DFT) of Layers in
 Imagenet Resnet to Different Classes

s_terrier

w_terrier

husky

eskimo_dog

fire truck

Figure 3.6: We plot the CCA similarity using the Discrete Fourier Transform between the
logits of five classes and layers in the Imagenet Resnet. The classes are firetruck and two
pairs of dog breeds (terriers and husky like dogs: husky and eskimo dog) that are chosen
to be similar to each other. These semantic properties are captured in CCA similarity,
where we see that the line corresponding to firetruck is clearly distinct from the two pairs
of dog breeds, and the two lines in each pair are both very close to each other, reflecting
the fact that each pair consists of visually similar looking images. Firetruck also appears
to be easier for the network to learn, with greater sensitivity displayed much sooner.

in bncv bncv bncv bncv bncv bncv bncv bn

Resnet layers

p2

bn2

c5

c4

c3

p1

bn1

c2

c1

in

C
o
n
v
n
e
t

la
y
e
rs

DFT CCA similarity between
 Resnet and Convnet on CIFAR10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.7: We plot the CCA similarity using the Discrete Fourier Transform between
convolutional layers of a Resnet and Convnet trained on CIFAR-10. We find that the
lower layers of both models are noticeably similar to each other, and get progressively
less similar as we compare higher layers. Note that the highest layers of the resnet are
least similar to the lower layers of the convnet.

the two pairs of dog breeds, and network develops greater sensitivity to firetruck

earlier on. The two pairs of dog breeds, purposefully chosen so that each pair is

similar to the other in appearance, have cca similarity lines that are very close to

each other through the network, indicating these classes are similar to each other.

98

3.4.4 Other Applications: Cross Model Comparison and com-

pression

SVCCA similarity can also be used to compare the similarity of representations

across different random initializations, and even different architectures. We

compare convolutional networks on CIFAR-10 across random initializations

(Appendix) and also a convolutional network to a residual network in Figure 3.7,

using the DFT method described in 3.3.

In Figure 3.3, we saw that projecting onto the subspace of the top few SVCCA

directions resulted in comparable accuracy. This observations motivates an ap-

proach to model compression. In particular, letting the output vector of layer l be

xxx(l) ∈ Rn×1, and the weights W (l), we replace the usual W (l)xxx(l) with (W (l)PT
x)(Pxxxx(l))

where Px is a k × n projection matrix, projecting xxx onto the top SVCCA directions.

This bottleneck reduces both parameter count and inference computational cost

for the layer by a factor ∼ k
n . In Figure App.5 in the Appendix, we show that we

can consecutively compress top layers with SVCCA by a significant amount (in

one case reducing each layer to 0.35 original size) and hardly affect performance.

3.5 Chapter Summary

In this chapter we introduced SVCCA, an algorithm which enables the mean-

ingful comparison of hidden representations between different neural network

layers and architectures. Using SVCCA we obtain novel insights into the learning

dynamics and learned representations of common neural network architectures.

99

These insights motivated a new Freeze Training technique which can reduce

the number of flops required to train networks and potentially even increase

generalization performance. We observe that CCA similarity can be a helpful

tool for interpretability, with sensitivity to different classes reflecting their se-

mantic properties. This technique also motivates a new algorithm for model

compression.

100

CHAPTER 4

IMPROVING ROBUSTNESS OF REPRESENTATION ANALYSIS AND

APPLICATIONS TO GENERALIZATION

Building on the results of Chapter 3, we continue the investigation into the hid-

den (distributed) representations of neural networks. Specifically, we analyse

the technique introduced in [253], and identify a key challenge: the method does

not effectively distinguish between the signal and the noise in the representation.

We address this via a better aggregation technique (Section 4.1.2). Building off

of [221], we demonstrate that groups of networks which generalize converge to

more similar solutions than those which memorize (Section 4.2.1), that wider net-

works converge to more similar solutions than narrower networks (Section 4.2.2),

and that networks with identical topology but distinct learning rates converge

to a small set of diverse solutions (Section 4.2.3). Using CCA to analyze RNN

representations over training, we find that, as with CNNs [253], RNNs exhibit

bottom-up convergence (Section 4.3.1). Across sequence timesteps, however, we

find that RNN representations vary significantly (Section B.0.3).

4.1 Canonical Correlation Analysis on Neural Network Repre-

sentations

Canonical Correlation Analysis [128], is a statistical technique for relating two

sets of observations arising from an underlying process. It identifies the ’best’

(maximizing correlation) linear relationships (under mutual orthogonality and

norm constraints) between two sets of multidimensional variates.

101

Concretely, in our setting, the underlying process is a neural network being

trained on some task. The multidimensional variates are neuron activation vectors

over some dataset X. As in [253], a neuron activation vector denotes the outputs

a single neuron z has on X. If X = {x1, ..., xm}, then the neuron z outputs scalars

z(x1), ..., z(xm), which can be stacked to form a vector.1

A single neuron activation vector is one multidimensional variate, and a layer

of neurons gives us a set of multidimensional variates. In particular, we can

consider two layers, L1, L2 of a neural network as two sets of observations, to

which we can then apply CCA, to determine the similarity between two layers.

Crucially, this similarity measure is invariant to (invertible) affine transforms

of either layer, which makes it especially apt for neural networks, where the

representation at each layer typically goes through an affine transform before

later use. Most importantly, it also enables comparisons between different neural

networks,2 which is not naively possible due to a lack of any kind of neuron to

neuron alignment.

4.1.1 Mathematical Details of Canonical Correlation

Here we overview the formal mathematical interpretation of CCA, as well as the

optimization problem to compute it. Let L1, L2 be a × n and b × n dimensional

matrices respectively, with L1 representing a multidimensional variates, and L2

representing b multidimensional variates. We wish to find vectors w, s in Ra,Rb

1This is different than the vector of all neuron outputs on a single input: z1(x1), ..., zN(x1), which
is also sometimes referred to as an activation vector.

2Including those with different topologies such that L1 and L2 have different sizes.

102

respectively, such that the dot product

ρ =
〈wT L1, sT L2〉

||wT L1|| · ||sT L2||

is maximized. Assuming the variates in L1, L2 are centered, and letting ΣL1,L1

denote the a by a covariance of L1, ΣL2,L2 denote the b by b covariance of L2, and

ΣL1,L2 the cross covariance:

〈wT L1, sT L2〉

||wT L1|| · ||sT L2||
=

wT ΣL1,L2 s√
wT ΣL1,L1w

√
sT ΣL2,L2 s

We can change basis, to w = Σ
−1/2
L1,L1

u and s = Σ
−1/2
L2,L2

v to get

wT ΣL1,L2 s√
wT ΣL1,L1w

√
sT ΣL2,L2 s

=
uT Σ

−1/2
L1,L1

ΣL1,L2Σ
−1/2
L2,L2

v
√

uT u
√

vT v
(*)

which can be solved with a singular value decomposition:

Σ
−1/2
L1,L1

ΣL1,L2Σ
−1/2
L2,L2

= UΛV

with u, v in (*) being the first left and right singular vectors, and the top singular

value of Λ corresponding to the canonical correlation coefficient ρ ∈ [0, 1], which

tells us how well correlated the vectors wT L1 = uT Σ
−1/2
L1,L1

L1 and sT L2 = vT Σ
−1/2
L2,L2

L2

(both vectors in Rn) are.

In fact, u, v, ρ are really the first in a series, and can be denoted u(1), v(1), ρ(1).

Next in the series are u(2), v(2), the second left and right singular vectors, and ρ(2)

the corresponding second highest singular value of Λ. ρ(2) denotes the correla-

tion between (u(2))T Σ
−1/2
L1,L1

L1 and (v(2))T Σ
−1/2
L2,L2

L2, which is the next highest possible

correlation under the constraint that 〈u(1), u(2)〉 = 0 and 〈v(1), v(2)〉 = 0.

The output of CCA is a series of singular vectors u(i), v(i) which are pairwise

orthogonal, their corresponding vectors in Rn: (u(i))T Σ
−1/2
L1,L1

L1 and (v(i))T Σ
−1/2
L2,L2

L2,

103

0 250 500 750 1000 1250 1500 1750 2000
Sorted Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Co

ef
fic

ie
nt

CIFAR-10 Correlation Coefficients Through Time
 Performance Convergence: Step 45000

Step
0
20000
40000
60000
79999

0 200 400 600 800 1000 1200
Sorted Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Co

ef
fic

ie
nt

PTB Correlation Coefficients Through Time
 Performance Convergence: Epoch 250

Epoch
1
101
201
301
401
500

0 200 400 600 800 1000 1200
Sorted Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Co

ef
fic

ie
nt

WikiText-2 Correlation Coefficients Through Time
 Performance Convergence: Epoch 350

Epoch
1
151
301
451
601
750

0 10000 20000 30000 40000 50000 60000 70000 80000
Epoch Number

0.0

0.2

0.4

0.6

0.8

CC
A

Di
st

an
ce

CIFAR-10 Stable and Unstable Parts
 of Representation

Stable
Unstable

100 200 300 400 500
Epoch Number

0.0

0.2

0.4

0.6

0.8

CC
A

Di
st

an
ce

PTB Stable and Unstable Parts of Representation
Stable
Unstable

100 200 300 400 500 600 700
Epoch Number

0.0

0.2

0.4

0.6

0.8

CC
A

Di
st

an
ce

WikiText-2 Stable and Unstable Parts
 of Representation

Stable
Unstable

Figure 4.1: CCA distinguishes between stable and unstable parts of the representa-
tion over the course of training. Sorted CCA coefficients (ρ(i)

t) comparing representa-
tions between layer L at times t through training with its representation at the final
timestep T for CNNs trained on CIFAR-10 (a), and RNNs trained on PTB (b) and
WikiText-2 (c). For all of these networks, at time t0 < T (indicated in title), the perfor-
mance converges to match final performance (see Figure App.1). However, many ρ(i)

t
are unconverged, corresponding to unnecessary parts of the representation (noise). To
distinguish between the signal and noise portions of the representation, we apply CCA
between L at timestep tearly early in training, and L at timestep T/2 to get ρT/2. We take
the 100 top converged vectors (according to ρT/2) to form S , and the 100 least converged
vectors to form B. We then compute CCA similarity between S and L at time t > tearly,
and similarly for B. S remains stable through training (signal), while B rapidly becomes
uncorrelated (d-f). Note that the sudden spike at T/2 in the unstable representation is
because it is chosen to be the least correlated with step T/2.

and finally their correlation coefficient ρ(i) ∈ [0, 1], with ρ(i) ≤ ρ(j), i > j. Letting

c = min(a, b), we end up with c non-zero ρ(i).

Note that the orthogonality of u(i), u(j) also results in the orthogonality of

(u(i))T Σ
−1/2
L1,L1

L1, (u(j))T Σ
−1/2
L1,L1

L1, as

〈(u(i))T Σ
−1/2
L1,L1

L1, (u(j))T Σ
−1/2
L1,L1

L1〉 = (u(i))T Σ
−1/2
L1,L1

L1LT
1 Σ
−1/2
L1,L1

(u(j)) = (u(i))T (u(j)) = 0 (**)

and so our CCA directions are also orthogonal.

104

4.1.2 Beyond Mean CCA Similarity

To determine the representational similarity between two layers L1, L2, [253]

prunes neurons with a preprocessing SVD step, and then applies CCA to L1, L2.

They then represent the similarity of L1, L2 by the mean correlation coefficient.

Adapting this to make a distance measure, dS VCCA(L1, L2):

dS VCCA(L1, L2) = 1 −
1
c

c∑
i=1

ρ(i)

One drawback with this measure is that it implicitly assumes that all c CCA

vectors are equally important to the representations at layer L1. However, there

has been ample evidence that DNNs do not rely on the full dimensionality of a

layer to represent high performance solutions [171, 75, 12, 219, 182, 221, 180]. As

a result, the mean correlation coefficient will typically underestimate the degree

of similarity.

To investigate this further, we first asked whether, over the course of training,

all CCA vectors converge to their final representations before the network’s

performance converges. To test this, we computed the CCA similarity between

layer L at times t throughout training with layer L at the final timestep T . Viewing

the sorted CCA coefficients ρ, we can see that many of the coefficients continue

to change well after the network’s performance has converged (Figure 4.1a-c,

Figure App.1). This result suggests that the unconverged coefficients and their

corresponding vectors may represent “noise” which is unnecessary for high

network performance.

We next asked whether the CCA vectors which stabilize early in training

105

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Signal Dimension to Noise

0.0

0.2

0.4

0.6

0.8

1.0

CC
A

Di
st

an
ce

Mean, PWCCA, SVCCA Comparison
Mean
PWCCA
SVCCA

Figure 4.2: Projection weighted (PWCCA) vs. SVCCA vs. unweighted mean Un-
weighted mean (blue) and projection weighted mean (red) were used to compare syn-
thetic ground truth signal and uncommon (noise) structure, each of fixed dimensionality.
As the signal to noise ratio decreases, the unweighted mean underestimates the shared
structure, while the projection weighted mean remains largely robust. SVCCA performs
better than the unweighted mean but less well than the projection weighting.

remain stable. To test this, we computed the CCA vectors between layer L at

timestep tearly in training and timestep T/2. We then computed the similarity

between the top 100 vectors (those which stabilized early) and the bottom 100

vectors (those which had not stabilized) with the representation at all other

training times. Consistent with our intuition, we found that those vectors which

stabilized early remained stable, while the unstable vectors continued to vary,

and therefore likely represent noise.

These results suggest that task-critical representations are learned by midway

through training, while the noise only approaches its final value towards the end.

We therefore suggest a simple and easy to compute variation that takes this into

account. We also discuss an alternate approach in Section B.0.2.

Projection Weighting One way to address this issue is to replace the mean by

a weighted mean, in which canonical correlations which are more important to

the underlying representation have higher weight. We propose a simple method,

projection weighting, to determine these weights. We base our proposition on the

106

hypothesis that CCA vectors that account for (loosely speaking) a larger propor-

tion of the original outputs are likely to be more important to the underlying

representation.

More formally, let layer L1, have neuron activation vectors [z1, ..., za], and CCA

vectors hi = (u(i))T Σ
−1/2
L1,L1

L1. We know from (**) that hi, h j are orthogonal. Because

computing CCA can result in the accrual of small numerical errors [321], we

first explicitly orthonormalize h1, ..., hc via Gram-Schmidt. We then identify how

much of the original output is accounted for by each hi:

α̃i =
∑

j

∣∣∣〈hi, z j〉
∣∣∣

Normalizing this to get weights αi, with
∑

i αi = 1, we can compute the projection

weighted CCA distance3:

d(L1, L2) = 1 −
c∑

i=1

αiρ
(i)

As a simple test of the benefits of projection weighting, we constructed a toy

case in which we used CCA to compare the representations of two networks with

common (signal) and uncommon (noise) structure, each of a fixed dimensionality.

We then used the naive mean and projected weighted mean to measure the

CCA distance between these two networks as a function of the ratio of signal

dimensions to noise dimensions. As expected we found that while the naive

mean was extremely sensitive to this ratio, the projection weighted mean was

largely robust (Figure 4.2).

3We note that this is technically a pseudo-distance rather than a distance as it is non-symmetric.

107

4.2 Using CCA to measure similarity of converged solutions

Because CCA measures the distance between two representations independent

of linear transforms, it enables formerly difficult comparisons between the repre-

sentations of different networks. Here, we use this property of CCA to evaluate

whether groups of networks trained on CIFAR-10 with different random initial-

izations converge to similar solutions under the following conditions:

• When trained on identically randomized labels (as in [370]) or on the true

labels (Section 4.2.1)

• As network width is varied (Section 4.2.2)

• In a large sweep of 200 networks (Section 4.2.3)

4.2.1 Generalizing networks converge to more similar solu-

tions than memorizing networks

It has recently been observed that DNNs are capable of solving image classifi-

cation tasks even when the labels have been randomly permuted [370]. Such

networks must, by definition, memorize the training data, and therefore cannot

generalize beyond the training set. However, the representational properties

which distinguish networks which memorize from those which generalize re-

main unclear.

In particular, we hypothesize that the representational similarity in a group

of generalizing networks (networks trained on the true labels) should differ from

108

Figure 4.3: Generalizing networks converge to more similar solutions than mem-
orizing networks. Groups of 5 networks were trained on CIFAR-10 with either true
labels (generalizing) or a fixed random permutation of the labels (memorizing). The
pairwise CCA distance was then compared within each group and between generalizing
and memorizing networks (inter) for each layer, based on the training data, and the
projection weighted CCA coefficient (with thresholding to remove low variance noise.)
While both categories converged to similar solutions in early layers, likely reflecting
convergent edge detectors, etc., generalizing networks converge to significantly more
similar solutions in later layers. At the softmax, sets of both generalizing and memoriz-
ing networks converged to nearly identical solutions, as all networks achieved near-zero
training loss. Error bars represent mean ± std weighted mean CCA distance across
pairwise comparisons.

the representational similarity of memorizing networks (networks trained on

random labels.)

To test this hypothesis, we trained groups of five networks with identical

topology on either unmodified CIFAR-10 or CIFAR-10 with random labels (the

same set of random labels was used for all networks), all of which were trained

109

to near-zero training loss4. Critically, the randomization of CIFAR-10 labels was

consistent for all networks. To evaluate the similarity of converged solutions, we

then measured the pairwise projection weighted CCA distance for each layer

among networks trained on unmodified CIFAR-10 (“Generalizing”), among net-

works trained on randomized label CIFAR-10 (“Memorizing”) and between each

pair of networks trained on unmodified and random label CIFAR-10 (“Inter”).

For all analyses, the representation in a given layer was obtained by averaging

across all spatial locations within each filter.

Remarkably, we found that not only do generalizing networks converge

to more similar solutions than memorizing networks (to be expected, since

generalizing networks are more constrained), but memorizing networks are as

similar to each other as they are to a generalizing network. This result suggests

that the solutions found by memorizing networks were as diverse as those found

across entirely different dataset labellings.

We also found that at early layers, all networks converged to equally similar

solutions, regardless of whether they generalize or memorize (Figure 4.3). Intu-

itively, this makes sense as the feature detectors found in early layers of CNNs

are likely required regardless of the dataset labelling. In contrast, however, at

later layers, groups of generalizing networks converged to substantially more

similar solutions than groups of memorizing networks (Figure 4.3). Even among

networks which generalize, the CCA distance between solutions found in later

layers was well above zero, suggesting that the solutions found were quite di-

verse. At the softmax layer, sets of both generalizing and memorizing networks

converged to highly similar solutions when CCA distance was computed based

4Details of the architectures and training procedures for this and following experiments can
be found in Appendix B.0.4.

110

on training data; when test data was used, however, only generalizing networks

converged to similar softmax outputs (Figure App.10), again reflecting that each

memorizing network memorizes the training data using a different strategy.

Importantly, because each network learned a different linear transform of

a similar solution, traditional distance metrics, such as cosine or Euclidean

distance, were insufficient to reveal this difference (Figure App.5). Additionally,

while unweighted CCA revealed the same broad pattern, it does not reveal that

generalizing networks get more similar in the final two layers (Figure App.9).

4.2.2 Wider networks converge to more similar solutions

In the model compression literature, it has been repeatedly noted that while

networks are robust to the removal of a large fraction of their parameters (in

some cases, as many as 90%), networks initialized and trained from the start

with fewer parameters converge to poorer solutions than those derived from

pruning a large networks [108, 109, 75, 12, 219, 182]. Recently, [83] proposed the

“lottery ticket hypothesis,” which hypothesizes that larger networks are more

likely to converge to good solutions because they are more likely to contain a

sub-network with a “lucky” initialization. If this were true, we might expect that

groups of larger networks are more likely to contain the same “lottery ticket”

sub-network and are therefore more likely to converge to similar solutions than

smaller networks.

To test this intuition, we trained groups of convolutional networks with in-

creasing numbers of filters at each layer. We then used projection weighted CCA

111

Figure 4.4: Larger networks converge to more similar solutions. Groups of 5 networks
with different random initializations were trained on CIFAR-10. Pairwise CCA distance
was computed for members of each group. Groups of larger networks converged to
more similar solutions than groups of smaller networks (a). Test accuracy was highly
correlated with degree of convergent similarity, as measured by CCA distance (b).

to measure the pairwise similarity between each group of networks of the same

size. Consistent with our intuition, we found that larger networks converged to

much more similar solutions than smaller networks (Figure 4.4).5 This is also

consistent with the equivalence of deep networks to Gaussian processes (GPs)

in the limit of infinite width [173, 208]. If each unit in a layer corresponds to a

draw from a GP, then as the number of units increases the CCA distance will go

to zero.

Interestingly, we also found that networks which converged to more similar

solutions also achieved noticeably higher test accuracy. In fact, we found that

across pairs of networks, the correlation between test accuracy and the pairwise

CCA distance was -0.96 (Figure 4.4), suggesting that the CCA distance between

groups of identical networks with different random initializations (computed

using the train data) may serve as a strong predictor of test accuracy. It may therefore

5To control for variability in CCA distance due to comparisons across representations of
different sizes, a random subset of 128 filters from the final layer were used for all network
comparisons. This bias should, if anything, lead to an overestimate of the distance between
groups of larger networks, as they are more heavily subsampled.

112

Figure 4.5: CCA reveals clusters of converged solutions across networks with differ-
ent random initializations and learning rates. 200 networks with identical topology
and varying learning rates were trained on CIFAR-10. CCA distance between the eighth
layer of each pair of networks was computed, revealing five distinct subgroups of net-
works (a). These five subgroups align almost perfectly with the subgroups discovered in
[221] (b; colors correspond to bars in a), despite the fact that the clusters in [221] were
generated using robustness to cumulative ablation, an entirely separate metric.

enable accurate prediction of test performance without requiring the use of a

validation set.

4.2.3 Across many initializations and learning rates, networks

converge to discriminable clusters of solutions

Here, we ask whether networks trained on the same data with different ini-

tializations and learning rates converge to the same solutions. To test this, we

measured the pairwise CCA distance between networks trained on unmodified

CIFAR-10. Interestingly, when we plotted the pairwise distance matrix (Figure

4.5), we observed a block diagonal structure consistent with five clusters of con-

verged network solutions, with one cluster highly dissimilar to the other four

clusters. Despite the fact that these networks all achieved similar train loss (and

many reached similar test accuracy as well), these clusters corresponded with

113

the learning rate used to train each network. This result suggests that there exist

multiple minima in the optimization landscape to which networks may converge

which are largely specified by the optimization parameters.

In [221], the authors also observed clusters of network solutions using the

relationship between networks’ robustness to cumulative deletion or “ablation”

of filters and generalization error. To test whether the same clusters are found

via these distinct approaches, we assigned a color to each cluster found using

CCA (see bars on left and top in Figure 4.5), and used these colors to identify the

same networks in a plot of ablation robustness vs. generalization error (Figure

4.5). Surprisingly, the clusters found using CCA aligned nearly perfectly with

those observed using ablation robustness.

This result suggests not only that networks with different learning rates

converge to distinct clusters of solutions, but also that these clusters can be

uncovered independently using multiple methods, each of which measures a

different property of the learned solution. Moreover, analyzing these networks

using traditional metrics, such as generalization error, would obscure the differ-

ences between many of these networks.

4.3 CCA on Recurrent Neural Networks

So far, CCA has been used to study feedforward networks. We now use CCA to

investigate RNNs. Our RNNs are LSTMs used for the Penn Treebank (PTB) and

WikiText-2 (WT2) language modelling tasks, following the implementation in

[210, 211].

114

One specific question we explore is whether the learning dynamics of RNNs

mirror the “bottom up” convergence observed in the feedforward case in [253],

as well as investigating whether CCA produces qualitatively better outputs than

other metrics. However, in the case of RNNs, there are two possible notions of

“time”. There is the training timestep, which affects the values of the weights, but

also a ‘sequence timestep’ – the number of tokens of the sequence that have been

fed into the recurrent net. This latter notion of time does not explicitly change

the weights, but results in updated values of the cell state and hidden state of

the network, which of course affect the representations of the network.

In this work, we primarily focus on the training notion of time; however,

we perform a preliminary investigation of the sequence notion of time as

well, demonstrating that CCA is capable of finding similarity across sequence

timesteps which are missed by traditional metrics (Figures App.2, App.4), but

also that even CCA often fails to find similarity in the hidden state across se-

quence timesteps, suggesting that representations over sequence timesteps are

often not linearly similar (Figure App.3).

4.3.1 Learning Dynamics Through Training Time

To measure the convergence of representations through training time, we com-

puted the projection weighted mean CCA value for each layer’s representation

throughout training to its final representation. We observed bottom-up conver-

gence in both Penn Treebank and WikiText-2 (Figure 4.6a-b). We repeated these

experiments with cosine and Euclidean distance (Figure App.8), finding that

while these other metrics also reveal a bottom up convergence, the results with

115

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CC
A

Di
st

an
ce

PTB Learning Dynamics

0 200 400 600
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7WikiText-2 Learning Dynamics
Layer

1
2
3

0 200 400 600
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6
WikiText-2 Deeper LSTM

Layer
1
2
3
4
5

0 200 400 600
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

WikiText-2 Unweighted Mean

Figure 4.6: RNNs exhibit bottom-up learning dynamics. To test whether layers con-
verge to their final representation over the course of training with a particular structure,
we compared each layer’s representation over the course of training to its final rep-
resentation using CCA. In shallow RNNs trained on PTB (a), and WikiText-2 (b), we
observed a clear bottom-up convergence pattern, in which early layers converge to
their final representation before later layers. In deeper RNNs trained on WikiText-2,
we observed a similar pattern (c). Importantly, the weighted mean reveals this effect
much more accurately than the unweighted mean, which is also supported by control
experiments (Figure App.8) (d), revealing the importance of appropriate weighting of
CCA coefficients.

CCA highlight this phenomena much more clearly.

We also observed bottom-up convergence in a deeper LSTM trained on

WikiText-2 (the larger dataset) (Figure 4.6). Interestingly, we found that this

result changes noticeably if we use the unweighted mean CCA instead, demon-

strating the importance of the weighting scheme (Figure 4.6).

4.4 Chapter Discussion and Future Directions

In this study, we developed CCA as a tool to gain insights on many representa-

tional properties of deep neural networks. We found that the representations

in hidden layers of a neural network contain both “signal” components, which

are stable over training and correspond to performance curves, and an unstable

“noise” component. Using this insight, we proposed projection weighted CCA,

116

adapting [253]. Leveraging the ability of CCA to compare across different net-

works, we investigated the properties of converged solutions of convolutional

neural networks (Section 4.2), finding that networks which generalize converge

to more similar solutions than those which memorize (Section 4.2.1), that wider

networks converge to more similar solutions than narrow networks (Section

4.2.2), and that across otherwise identical networks with different random initial-

izations and learning rates, networks converge to diverse clusters of solutions

(Section 4.2.3). We also used projection weighted CCA to study the dynamics

(both across training time and sequence steps) of RNNs, (Section 4.3), finding

that RNNs exhibit bottom-up convergence over the course of training (Section

4.3.1), and that across sequence timesteps, RNN representations vary nonlinearly

(Section B.0.3).

One interesting direction for future work is to examine what is unique about

directions which are preserved across networks trained with different initializa-

tion. Previous work has demonstrated that these directions are sufficient for the

network computation [253], but the properties that make these directions special

remain unknown. Furthermore, the attributes which specifically distinguish

the diverse solutions found in Figure 4.5 remain unclear. We also observed that

networks which converge to similar solutions exhibit higher generalization per-

formance (Figure 4.4). In future work, it would be interesting to explore whether

this insight could be used as a regularizer to improve network performance.

Additionally, it would be useful to explore whether this result is consistent in

RNNs as well as CNNs. Another interesting direction would be to investigate

which aspects of the representation present in RNNs is stable over time and

which aspects vary. Additionally, in previous work [253], it was observed that

fixing layers in CNNs over the course of training led to better test performance

117

(“freeze training”). An interesting open question would be to investigate whether

a similar training protocol could be adapted for RNNs.

118

Part III

Informing Algorithms for Efficient

Learning

119

CHAPTER 5

RAPID LEARNING OR FEATURE REUSE? INVESTIGATING FEW-SHOT

LEARNING VIA META-LEARNING

In the following two chapters, we study algorithms for training machine learn-

ing systems more efficiently. Specifically, a core challenge in the application of

machine learning systems to (especially) specialized domains such as medicine

is getting access to enough training data. We study two learning methods that

can be used to mitigate these issues, few-shot learning and (in the next chapter)

transfer learning.

In few-shot learning, new tasks must be learned with a very limited num-

ber of labelled datapoints. A significant body of work has looked at tackling

this challenge using meta-learning approaches [158, 327, 295, 76, 277, 259, 225].

Broadly speaking, these approaches define a family of tasks, some of which are

used for training and others solely for evaluation. A proposed meta-learning

algorithm then looks at learning properties that generalize across the different

training tasks, and result in fast and efficient learning of the evaluation tasks.

One highly successful meta-learning algorithm has been Model Agnostic Meta-

Learning (MAML) [76]. At a high level, the MAML algorithm is comprised of

two optimization loops. The outer loop (in the spirit of meta-learning) aims

to find an effective meta-initialization, from which the inner loop can perform

efficient adaptation – optimize parameters to solve new tasks with very few

labelled examples. This algorithm, with deep neural networks as the underlying

model, has been highly influential, with significant follow on work, such as first

order variants [225], probabilistic extensions [79], augmentation with generative

120

modelling [272], and many others [133, 78, 97, 318].

Despite the popularity of MAML, and the numerous followups and exten-

sions, there remains a fundamental open question on the basic algorithm. Does

the meta-initialization learned by the outer loop result in rapid learning on unseen

test tasks (efficient but significant changes in the representations) or is the success

primarily due to feature reuse (with the meta-initialization already providing high

quality representations)? In this chapter, we explore this question and its many

surprising consequences. Our main contributions are:

• We perform layer freezing experiments and latent representational analysis

of MAML, finding that feature reuse is the predominant reason for efficient

learning.

• Based on these results, we propose the ANIL (Almost No Inner Loop) algo-

rithm, a significant simplification to MAML that removes the inner loop

updates for all but the head (final layer) of a neural network during training

and inference. ANIL performs identically to MAML on standard bench-

mark few-shot classification and RL tasks and offers computational benefits

over MAML.

• We study the effect of the head of the network, finding that once training is

complete, the head can be removed, and the representations can be used

without adaptation to perform unseen tasks, which we call the No Inner

Loop (NIL) algorithm.

• We study different training regimes, e.g. multiclass classification, multitask

learning, etc, and find that the task specificity of MAML/ANIL at training

facilitate the learning of better features. We also find that multitask training,

121

a popular baseline with no task specificity, performs worse than random

features.

• We discuss rapid learning and feature reuse in the context of other meta-

learning approaches.

5.1 Related Work

MAML [76] is a highly popular meta-learning algorithm for few-shot learning,

achieving competitive performance on several benchmark few-shot learning

problems [158, 327, 295, 277, 259, 225]. It is part of the family of optimization-

based meta-learning algorithms, with other members of this family presenting

variations around how to learn the weights of the task-specific classifier. For

example [176, 94, 29, 175, 377] first learn functions to embed the support set and

target examples of a few-shot learning task, before using the test support set to

learn task specific weights to use on the embedded target examples. [114] also

proceeds similarly, using a Bayesian approach. The method of [21] explores a

related approach, focusing on applications in text classification.

Of these optimization-based meta-learning algorithms, MAML has been

especially influential, inspiring numerous direct extensions in recent literature

[11, 79, 97, 272]. Most of these extensions critically rely on the core structure of

the MAML algorithm, incorporating an outer loop (for meta-training), and an

inner loop (for task-specific adaptation), and there is little prior work analyzing

why this central part of the MAML algorithm is practically successful. In this

work, we focus on this foundational question, examining how and why MAML

122

leads to effective few-shot learning. To do this, we utilize analytical tools such as

Canonical Correlation Analysis (CCA) [253, 220] and Centered Kernel Alignment

(CKA) [164] to study the neural network representations learned with the MAML

algorithm, which also demonstrates MAML’s ability to learn effective features

for few-shot learning.

Insights from this analysis lead to a simplified algorithm, ANIL, which al-

most completely removes the inner optimization loop with no reduction in

performance. Prior works [381, 140] have proposed algorithms where some

parameters are only updated in the outer loop and others only in the inner loop.

However, these works are motivated by different questions, such as improving

MAML’s performance or learning better representations, rather than analysing

rapid learning vs feature reuse in MAML.

5.2 MAML, Rapid Learning, and Feature Reuse

Our goal is to understand whether the MAML algorithm efficiently solves new

tasks due to rapid learning or feature reuse. In rapid learning, large representational

and parameter changes occur during adaptation to each new task as a result of

favorable weight conditioning from the meta-initialization. In feature reuse, the

meta-initialization already contains highly useful features that can mostly be

reused as is for new tasks, so little task-specific adaptation occurs. Figure 5.1

shows a schematic of these two hypotheses.

We start off by overviewing the details of the MAML algorithm, and then we

study the rapid learning vs feature reuse question via layer freezing experiments

123

Figure 5.1: Rapid learning and feature reuse paradigms. In Rapid Learning, outer
loop training leads to a parameter setting that is well-conditioned for fast learning,
and inner loop updates result in significant task specialization. In Feature Reuse, the
outer loop leads to parameter values corresponding to reusable features, from which the
parameters do not move significantly in the inner loop.

and analyzing latent representations of models trained with MAML. The results

strongly support feature reuse as the predominant factor behind MAML’s success.

In Section 5.3, we explore the consequences of this, providing a significant

simplification of MAML, the ANIL algorithm, and in Section 5.5, we outline the

connections to meta-learning more broadly.

5.2.1 Overview of MAML

The MAML algorithm finds an initialization for a neural network so that new

tasks can be learnt with very few examples (k examples from each class for k-shot

learning) via two optimization loops:

• Outer Loop: Updates the initialization of the neural network parameters

(often called the meta-initialization) to a setting that enables fast adaptation

to new tasks.

• Inner Loop: Performs adaptation: takes the outer loop initialization, and,

124

separately for each task, performs a few gradient updates over the k labelled

examples (the support set) provided for adaptation.

More formally, we first define our base model to be a neural network with

meta-initialization parameters θ; let this be represented by fθ. We have have a

distribution D over tasks, and draw a batch {T1, ...,TB} of B tasks from D. For

each task Tb, we have a support set of examples STb , which are used for inner loop

updates, and a target set of examplesZTb , which are used for outer loop updates.

Let θ(b)
i signify θ after i gradient updates for task Tb, and let θ(b)

0 = θ. In the inner

loop, during each update, we compute

θ(b)
m = θ(b)

m−1 − α∇θ(b)
m−1
LS Tb

(fθ(b)
m−1(θ)) (1)

for m fixed across all tasks, where LS Tb
(fθ(b)

m−1(θ)) is the loss on the support set of Tb

after m − 1 inner loop updates.

We then define the meta-loss as

Lmeta(θ) =

B∑
b=1

LZTb
(fθ(b)

m (θ))

where LZTb
(fθ(b)

m (θ)) is the loss on the target set of Tb after m inner loop updates,

making clear the dependence of fθ(b)
m

on θ. The outer optimization loop then

updates θ as

θ = θ − η∇θLmeta(θ)

At test time, we draw unseen tasks {T (test)
1 , ...,T (test)

n } from the task distribution,

and evaluate the loss and accuracy onZT (test)
i

after inner loop adaptation using

ST (test)
i

(e.g. loss is LZ
T (test)

i

(
fθ(i)

m (θ)

)
).

125

5.2.2 Rapid Learning or Feature Reuse?

We now turn our attention to the key question: Is MAML’s efficacy predominantly

due to rapid learning or feature reuse? In investigating this question, there is an

important distinction between the head (final layer) of the network and the earlier

layers (the body of the network). In each few-shot learning task, there is a different

alignment between the output neurons and classes. For instance, in task T1, the

(wlog) five output neurons might correspond, in order, to the classes (dog, cat,

frog, cupcake, phone), while for a different task, T2, they might correspond, in

order, to (airplane, frog, boat, car, pumpkin). This means that the head must

necessarily change for each task to learn the new alignment, and for the rapid

learning vs feature reuse question, we are primarily interested in the behavior of

the body of the network. We return to this in more detail in Section 5.4, where

we present an algorithm (NIL) that does not use a head at test time.

To study rapid learning vs feature reuse in the network body, we perform

two sets of experiments: (1) We evaluate few-shot learning performance when

freezing parameters after MAML training, without test time inner loop adapta-

tion; (2) We use representational similarity tools to directly analyze how much

the network features and representations change through the inner loop. We use

the MiniImageNet dataset, a popular standard benchmark for few-shot learning,

and with the standard convolutional architecture in [76]. Results are averaged

over three random seeds. Full implementation details are in Appendix C.2.

126

Freeze layers MiniImageNet-5way-1shot MiniImageNet-5way-5shot

None 46.9 ± 0.2 63.1 ± 0.4
1 46.5 ± 0.3 63.0 ± 0.6

1,2 46.4 ± 0.4 62.6 ± 0.6
1,2,3 46.3 ± 0.4 61.2 ± 0.5

1,2,3,4 46.3 ± 0.4 61.0 ± 0.6

Table 5.1: Freezing successive layers (preventing inner loop adaptation) does not
affect accuracy, supporting feature reuse. To test the amount of feature reuse happening
in the inner loop adaptation, we test the accuracy of the model when we freeze (prevent
inner loop adaptation) a contiguous block of layers at test time. We find that freezing
even all four convolutional layers of the network (all layers except the network head)
hardly affects accuracy. This strongly supports the feature reuse hypothesis: layers don’t
have to change rapidly at adaptation time; they already contain good features from the
meta-initialization.

Freezing Layer Representations

To study the impact of the inner loop adaptation, we freeze a contiguous subset

of layers of the network, during the inner loop at test time (after using the

standard MAML algorithm, incorporating both optimization loops, for training).

In particular, the frozen layers are not updated at all to the test time task, and

must reuse the features learned by the meta-initialization that the outer loop

converges to. We compare the few-shot learning accuracy when freezing to the

accuracy when allowing inner loop adaptation.

Results are shown in Table 5.1. We observe that even when freezing all layers

in the network body, performance hardly changes. This suggests that the meta-

initialization has already learned good enough features that can be reused as is,

without needing to perform any rapid learning for each test time task.

127

Representational Similarity Experiments

We next study how much the latent representations (the latent functions) learned

by the neural network change during the inner loop adaptation phase. Following

several recent works [253, 278, 220, 203, 254, 95, 25] we measure this by apply-

ing Canonical Correlation Analysis (CCA) to the latent representations of the

network. CCA provides a way to the compare representations of two (latent)

layers L1, L2 of a neural network, outputting a similarity score between 0 (not

similar at all) and 1 (identical). For full details, see [253, 220]. In our analysis, we

take L1 to be a layer before the inner loop adaptation steps, and L2 after the inner

loop adaptation steps. We compute CCA similarity between L1, L2, averaging

the similarity score across different random seeds of the model and different test

time tasks. Full details are in Appendix C.2.2

The result is shown in Figure 5.2, left pane. Representations in the body of the

network (the convolutional layers) are highly similar, with CCA similarity scores

of > 0.9, indicating that the inner loop induces little to no functional change.

By contrast, the head of the network, which does change significantly in the

inner loop, has a CCA similarity of less than 0.5. To further validate this, we

also compute CKA (Centered Kernel Alignment) [164] (Figure 5.2 right), another

similarity metric for neural network representations, which illustrates the same

pattern. These representational analysis results strongly support the feature

reuse hypothesis, with further results in the Appendix, Sections C.2.3 and C.2.4

providing yet more evidence.

128

Conv1 Conv2 Conv3 Conv4 Head
Layer

0.0

0.2

0.4

0.6

0.8

1.0

CC
A

Si
m

ila
rit

y

CCA Similarity Before and After
 Inner Loop Adaptation

Conv1 Conv2 Conv3 Conv4 Head
Layer

0.0

0.2

0.4

0.6

0.8

1.0

CK
A

Si
m

ila
rit

y

CKA Similarity Before and After
 Inner Loop Adaptation

Figure 5.2: High CCA/CKA similarity between representations before and after
adaptation for all layers except the head. We compute CCA/CKA similarity between
the representation of a layer before the inner loop adaptation and after adaptation. We ob-
serve that for all layers except the head, the CCA/CKA similarity is almost 1, indicating
perfect similarity. This suggests that these layers do not change much during adaptation,
but mostly perform feature reuse. Note that there is a slight dip in similarity in the
higher conv layers (e.g. conv3, conv4); this is likely because the slight representational
differences in conv1, conv2 have a compounding effect on the representations of conv3,
conv4. The head of the network must change significantly during adaptation, and this is
reflected in the much lower CCA/CKA similarity.

Feature Reuse Happens Early in Learning

Having observed that the inner loop does not significantly affect the learned

representations with a fully trained model, we extend our analysis to see whether

the inner loop affects representations and features earlier on in training. We take

MAML models at 10000, 20000, and 30000 iterations into training, perform freez-

ing experiments (as in Section 5.2.2) and representational similarity experiments

(as in Section 5.2.2).

Results in Figure 5.3 show the same patterns from early in training, with CCA

similarity between activations pre and post inner loop update on MiniImageNet-

5way-5shot being very high for the body (just like Figure 5.2), and similar to Table

5.1, test accuracy remaining approximately the same when freezing contiguous

subsets of layers, even when freezing all layers of the network body. This shows

129

None 1 1,2 1,2,3 1,2,3,4
Layers Frozen

55

60

65

70

Te
st

 A
cc

ur
ac

y

Test Set Accuracy Freezing
 Consecutive Layers in Inner Loop

Iteration 10000; None: 61.3%; (1,2,3,4): 59.7%
Iteration 20000; None: 63.0%; (1,2,3,4): 61.3%
Iteration 30000; None: 63.1%; (1,2,3,4): 61.0%

Conv1 Conv2 Conv3 Conv4 Head
Layer

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CC
A

Si
m

ila
rit

y

CCA Similarity Before and After
 Inner Loop Adaptation

Iteration 10000
Iteration 20000
Iteration 30000

Figure 5.3: Inner loop updates have little effect on learned representations from
early on in learning. Left pane: we freeze contiguous blocks of layers (no adaptation at
test time), on MiniImageNet-5way-5shot and see almost identical performance. Right
pane: representations of all layers except the head are highly similar pre/post adaptation
– i.e. features are being reused. This is true from early (iteration 10000) in training.

Figure 5.4: Schematic of MAML and ANIL algorithms. The difference between the
MAML and ANIL algorithms: in MAML (left), the inner loop (task-specific) gradient
updates are applied to all parameters θ, which are initialized with the meta-initialization
from the outer loop. In ANIL (right), only the parameters corresponding to the network
head θhead are updated by the inner loop, during training and testing.

that even early on in training, significant feature reuse is taking place, with the

inner loop having minimal effect on learned representations and features. Results

for 1shot MiniImageNet are in Appendix C.2.5, and show very similar trends.

5.3 The ANIL (Almost No Inner Loop) Algorithm

In the previous section we saw that for all layers except the head of the neural

network, the meta-initialization learned by the outer loop of MAML results in

130

Method Omniglot-20way-1shot Omniglot-20way-5shot

MAML 93.7 ± 0.7 96.4 ± 0.1
ANIL 96.2 ± 0.5 98.0 ± 0.3

Method MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML 46.9 ± 0.2 63.1 ± 0.4
ANIL 46.7 ± 0.4 61.5 ± 0.5

Method HalfCheetah-Direction HalfCheetah-Velocity 2D-Navigation

MAML 170.4 ± 21.0 -139.0 ± 18.9 -20.3 ± 3.2
ANIL 363.2 ± 14.8 -120.9 ± 6.3 -20.1 ± 2.3

Table 5.2: ANIL matches the performance of MAML on few-shot image classification
and RL. On benchmark few-shot classification tasks MAML and ANIL have comparable
accuracy, and also comparable average return (the higher the better) on standard RL
tasks [76].

very good features that can be reused as is on new tasks. Inner loop adaptation

does not significantly change the representations of these layers, even from early

on in training. This suggests a natural simplification of the MAML algorithm:

the ANIL (Almost No Inner Loop) algorithm.

In ANIL, during training and testing, we remove the inner loop updates for

the network body, and apply inner loop adaptation only to the head. The head

requires the inner loop to allow it to align to the different classes in each task.

In Section 5.4.1 we consider another variant, the NIL (No Inner Loop) algorithm,

that removes the head entirely at test time, and uses learned features and cosine

similarity to perform effective classification, thus avoiding inner loop updates

altogether.

For the ANIL algorithm, mathematically, let θ = (θ1, ..., θl) be the (meta-

initialization) parameters for the l layers of the network. Following the notation

131

of Section 5.2.1, let θ(b)
m be the parameters after m inner gradient updates for task

Tb. In ANIL, we have that:

θ(b)
m =

(
θ1, . . . , (θl)

(b)
m−1 − α∇(θl)

(b)
m−1
LS b(fθ(b)

m−1
)
)

i.e. only the final layer gets the inner loop updates. As before, we then define

the meta-loss, and compute the outer loop gradient update. The intuition for

ANIL arises from Figure 5.3, where we observe that inner loop updates have

little effect on the network body even early in training, suggesting the possibility

of removing them entirely. Note that this is distinct to the freezing experiments,

where we only removed the inner loop at inference time. Figure 5.4 presents the

difference between MAML and ANIL, and Appendix C.3.1 considers a simple

example of the gradient update in ANIL, showing how the ANIL update differs

from MAML.

Computational benefit of ANIL: As ANIL almost has no inner loop, it signif-

icantly speeds up both training and inference. We found an average speedup

of 1.7x per training iteration over MAML and an average speedup of 4.1x per

inference iteration. In Appendix C.3.5 we provide the full results.

Results of ANIL on Standard Benchmarks: We evaluate ANIL on few-shot

image classification and RL benchmarks, using the same model architectures

as the original MAML authors, for both supervised learning and RL. Further

implementation details are in Appendix C.3.4. The results in Table 5.2 (mean

and standard deviation of performance over three random initializations) show

that ANIL matches the performance of MAML on both few-shot classification

(accuracy) and RL (average return, the higher the better), demonstrating that the

132

0 5000 10000 15000 20000 25000 30000
Training iteration

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Lo
ss

Loss curves
MAML train loss
MAML val loss
ANIL train loss
ANIL val loss

0 5000 10000 15000 20000 25000 30000
Training iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Accuracy curves

MAML train acc
MAML val acc
ANIL train acc
ANIL val acc

MiniImageNet-5way-5shot

Figure 5.5: MAML and ANIL learn very similarly. Loss and accuracy curves
for MAML and ANIL on MiniImageNet-5way-5shot, illustrating how MAML
and ANIL behave similarly through the training process.

inner loop adaptation of the body is unnecessary for learning good features.

MAML and ANIL Models Show Similar Behavior: MAML and ANIL per-

form equally well on few-shot learning benchmarks, illustrating that removing

the inner loop during training does not hinder performance. To study the be-

havior of MAML and ANIL models further, we plot learning curves for both

algorithms on MiniImageNet-5way-5shot, Figure 5.5. We see that loss and accu-

racy for both algorithms look very similar throughout training. We also look at

CCA and CKA scores of the representations learned by both algorithms, Table

5.3. We observe that MAML-ANIL representations have the same average simi-

larity scores as MAML-MAML and ANIL-ANIL representations, suggesting both

algorithms learn comparable features (removing the inner loop doesn’t change

the kinds of features learned.) Further learning curves and representational

similarity results are presented in Appendices C.3.2 and C.3.3.

133

Model Pair CCA Similarity CKA Similarity

MAML-MAML 0.51 0.83
ANIL-ANIL 0.51 0.86

ANIL-MAML 0.50 0.83

Table 5.3: MAML and ANIL models learn comparable representations. Comparing
CCA/CKA similarity scores of the of MAML-ANIL representations (averaged over
network body), and MAML-MAML and ANIL-ANIL similarity scores (across different
random seeds) shows algorithmic differences between MAML/ANIL does not result in
vastly different types of features learned.

5.4 Contributions of the Network Head and Body

So far, we have seen that MAML predominantly relies on feature reuse, with the

network body (all layers except the last layer) already containing good features

at meta-initialization. We also observe that such features can be learned even

without inner loop adaptation during training (ANIL algorithm). The head,

however, requires inner loop adaptation to enable task specificity.

In this section, we explore the contributions of the network head and body.

We first ask: How important is the head at test time, when good features have already

been learned? Motivating this question is that the features in the body of the

network needed no adaptation at inference time, so perhaps they are themselves

sufficient to perform classification, with no head. In Section 5.4.1, we find that test

time performance is entirely determined by the quality of these representations,

and we can use similarity of the frozen meta-initialization representations to

perform unseen tasks, removing the head entirely. We call this the NIL (No Inner

Loop) algorithm.

Given this result, we next study how useful the head is at training (in en-

suring the network body learns good features). We look at multiple different

134

training regimes (some without the head) for the network body, and evaluate

the quality of the representations. We find that MAML/ANIL result in the best

representations, demonstrating the importance of the head during training for

feature learning.

5.4.1 The Head at Test Time and the NIL (No Inner Loop) Algo-

rithm

We study how important the head and task specific alignment are when good

features have already been learned (through training) by the meta-initialization.

At test time, we find that the representations can be used directly, with no

adaptation, which leads to the No Inner Loop (NIL) algorithm:

1. Train a few-shot learning model with ANIL/MAML algorithm as standard.

We use ANIL training.

2. At test time, remove the head of the trained model. For each task, first

pass the k labelled examples (support set) through the body of the network,

to get their penultimate layer representations. Then, for a test example,

compute cosine similarities between its penultimate layer representation

and those of the support set, using these similarities to weight the support

set labels, as in [327].

The results for the NIL algorithm, following ANIL training, on few-shot

classification benchmarks are given in Table 5.4. Despite having no network

head and no task specific adaptation, NIL performs comparably to MAML and

135

Method Omniglot-20way-1shot Omniglot-20way-5shot

MAML 93.7 ± 0.7 96.4 ± 0.1
ANIL 96.2 ± 0.5 98.0 ± 0.3
NIL 96.7 ± 0.3 98.0 ± 0.04

Method MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML 46.9 ± 0.2 63.1 ± 0.4
ANIL 46.7 ± 0.4 61.5 ± 0.5
NIL 48.0 ± 0.7 62.2 ± 0.5

Table 5.4: NIL algorithm performs as well as MAML and ANIL on few-shot image
classification. Performance of MAML, ANIL, and NIL on few-shot image classification
benchmarks. We see that with no test-time inner loop, and just learned features, NIL
performs comparably to MAML and ANIL, indicating the strength of the learned features,
and the relative lack of importance of the head at test time.

ANIL. This demonstrates that the features learned by the network body when

training with MAML/ANIL (and reused at test time) are the critical component

in tackling these benchmarks.

5.4.2 Training Regimes for the Network Body

The NIL algorithm and results of Section 5.4.1 lead to the question of how

important task alignment and the head are during training to ensure good

features. Here, we study this question by examining the quality of features

arising from different training regimes for the body. We look at (i) MAML and

ANIL training; (ii) multiclass classification, where all of the training data and

classes (from which training tasks are drawn) are used to perform standard

classification; (iii) multitask training, a standard baseline, where no inner loop or

task specific head is used, but the network is trained on all the tasks at the same

time; (iv) random features, where the network is not trained at all, and features

136

are frozen after random initialization; (v) NIL at training time, where there is no

head and cosine distance on the representations is used to get the label.

After training, we apply the NIL algorithm to evaluate test performance, and

quality of features learned at training. The results are shown in Table 5.5. MAML

and ANIL training performs best. Multitask training, which has no task specific

head, performs the worst, even worse than random features (adding evidence

for the need for task specificity at training to facilitate feature learning.) Using

NIL during training performs worse than MAML/ANIL. These results suggest

that the head is important at training to learn good features in the network body.

In Appendix C.4.1, we study test time performance variations from using

a MAML/ANIL head instead of NIL, finding (as suggested by Section 5.4.1)

very little performance difference. Additional results on similarity between the

representations of different training regimes is given in Appendix C.4.2.

5.5 Feature Reuse in Other Meta-Learning Algorithms

Up till now, we have closely examined the MAML algorithm, and have demon-

strated empirically that the algorithm’s success is primarily due to feature reuse,

rather than rapid learning. We now discuss rapid learning vs feature reuse more

broadly in meta-learning. By combining our results with an analysis of evidence

reported in prior work, we find support for many meta-learning algorithms

succeeding via feature reuse, identifying a common theme characterizing the

operating regime of much of current meta-learning.

137

Method MiniImageNet-5way-1shot

MAML training-NIL head 48.4 ± 0.3
ANIL training-NIL head 48.0 ± 0.7

Multiclass training-NIL head 39.7 ± 0.3
Multitask training-NIL head 26.5 ± 1.1

Random features-NIL head 32.9 ± 0.6

NIL training-NIL head 38.3 ± 0.6

Method MiniImageNet-5way-5shot

MAML training-NIL head 61.5 ± 0.8
ANIL training-NIL head 62.2 ± 0.5

Multiclass training-NIL head 54.4 ± 0.5
Multitask training-NIL head 34.2 ± 3.5

Random features-NIL head 43.2 ± 0.5

NIL training-NIL head 43.0 ± 0.2

Table 5.5: MAML/ANIL training leads to superior features learned, supporting im-
portance of head at training. Training with MAML/ANIL leads to superior performance
over other methods which do not have task specific heads, supporting the importance of
the head at training.

5.5.1 Optimization and Model Based meta-learning

MAML falls within the broader class of optimization based meta-learning algo-

rithms, which at inference time, directly optimize model parameters for a new

task using the support set. MAML has inspired many other optimization-based

algorithms, which utilize the same two-loop structure [176, 272, 79]. Our analysis

so far has thus yielded insights into the feature reuse vs rapid learning question

for this class of algorithms. Another broad class of meta-learning consists of

model based algorithms, which also have notions of rapid learning and feature

reuse.

In the model-based setting, the meta-learning model’s parameters are not

138

directly optimized for the specific task on the support set. Instead, the model

typically conditions its output on some representation of the task definition. One

way to achieve this conditioning is to jointly encode the entire support set in the

model’s latent representation [327, 303], enabling it to adapt to the characteristics

of each task. This constitutes rapid learning for model based meta-learning

algorithms.

An alternative to joint encoding would be to encode each member of the

support set independently, and apply a cosine similarity rule (as in [327]) to

classify an unlabelled example. This mode of operation is purely feature reuse

– we do not use information defining the task to directly influence the decision

function.

If joint encoding gave significant test-time improvement over non-joint en-

coding, then this would suggest that rapid learning of the test-time task is taking

place, as task specific information is being utilized to influence the model’s

decision function. However, on analyzing results in prior literature, this improve-

ment appears to be minimal. Indeed, in e.g. Matching Networks [327], using joint

encoding one reaches 44.2% accuracy on MiniImageNet-5way-1shot, whereas

with independent encoding one obtains 41.2%: a small difference. More refined

models suggest the gap is even smaller. For instance, in [43], many methods

for one shot learning were re-implemented and studied, and baselines without

joint encoding achieved 48.24% accuracy in MiniImageNet-5way-1shot, whilst

other models using joint encoding such as Relation Net [303] achieve very similar

accuracy of 49.31% (they also report MAML, at 46.47%). As a result, we believe

that the dominant mode of “feature reuse” rather than “rapid learning” is what

has currently dominated both MAML-styled optimization based meta-learning

139

and model based meta-learning.

5.6 Chapter Summary

In this chapter, we studied a fundamental question on whether the highly suc-

cessful MAML algorithm relies on rapid learning or feature reuse. Through a

series of experiments, we found that feature reuse is the dominant component in

MAML’s efficacy on benchmark datasets. This insight led to the ANIL (Almost

No Inner Loop) algorithm, a simplification of MAML that has identical perfor-

mance on standard image classification and reinforcement learning benchmarks,

and provides computational benefits. We further study the importance of the

head (final layer) of a neural network trained with MAML, discovering that

the body (lower layers) of a network is sufficient for few-shot classification at

test time, allowing us to remove the network head for testing (NIL algorithm)

and still match performance. We connected our results to the broader literature

in meta-learning, identifying feature reuse to be a common mode of operation

for other meta-learning algorithms also. Based off of our conclusions, future

work could look at developing and analyzing new meta-learning algorithms

that perform more rapid learning, which may expand the datasets and prob-

lems amenable to these techniques. We note that our study mainly considered

benchmark datasets, such as Omniglot and MiniImageNet. It is an interesting

future direction to consider rapid learning and feature reuse in MAML on other

few-shot learning datasets, such as those from [318].

140

CHAPTER 6

UNDERSTANDING TRANSFER LEARNING WITH APPLICATIONS TO

MEDICAL IMAGING

Following the results of Chapter 5 on few-shot learning as one method for

(data) efficient training of machine learning systems, in this chapter we study

transfer learning, a highly popular method for developing deep learning models,

especially in medical applications.

Indeed for many applications of deep learning to medical imaging imaging,

the present standard is to take an existing architecture designed for natural image

datasets such as ImageNet, together with corresponding pretrained weights (e.g.

ResNet [117], Inception [305]), and then fine-tune the model on the medical

imaging data.

This basic formula has seen almost universal adoption across many different

medical specialties. Two prominent lines of research have used this methodology

for applications in radiology, training architectures like ResNet, DenseNet on

chest x-rays [336, 255] and ophthalmology, training Inception-v3, ResNet on

retinal fundus images [3, 102, 252, 57]. The research on ophthalmology has also

culminated in FDA approval [316], and full clinical deployment [323]. Other

applications include performing early detection of Alzheimer’s Disease [62],

identifying skin cancer from dermatologist level photographs [73], and even

determining human embryo quality for IVF procedures [149].

Despite the immense popularity of transfer learning in medical imaging, there

has been little work studying its precise effects, even as recent work on transfer

141

learning in the natural image setting [115, 165, 224, 136, 89] has challenged many

commonly held beliefs. For example in [115], it is shown that transfer (even

between similar tasks) does not necessarily result in performance improvements,

while [165] illustrates that pretrained features may be less general than previously

thought.

In the medical imaging setting, many such open questions remain. As de-

scribed above, transfer learning is typically performed by taking a standard

ImageNet architecture along with its pretrained weights, and then fine-tuning on

the target task. However, ImageNet classification and medical image diagnosis

have considerable differences.

First, many medical imaging tasks start with a large image of a bodily re-

gion of interest and use variations in local textures to identify pathologies. For

example, in retinal fundus images, small red ‘dots’ are an indication of microa-

neurysms and diabetic retinopathy [1], and in chest x-rays local white opaque

patches are signs of consolidation and pneumonia. This is in contrast to natural

image datasets like ImageNet, where there is often a clear global subject of the

image (Fig. 6.1). There is thus an open question of how much ImageNet feature

reuse is helpful for medical images.

Additionally, most datasets have larger images (to facilitate the search for

local variations), but with many fewer images than ImageNet, which has roughly

one million images. By contrast medical datasets range from several thousand

images [149] to a couple hundred thousand [102, 255].

Finally, medical tasks often have significantly fewer classes (5 classes for

Diabetic Retinopathy diagnosis [102], 5 − 14 chest pathologies from x-rays [255])

142

than the standard ImageNet classification setup of 1000 classes. As standard

ImageNet architectures have a large number of parameters concentrated at the

higher layers for precisely this reason, the design of these models is likely to be

suboptimal for the medical setting.

In this chapter, we present results from performing a fine-grained study on

transfer learning for medical images. Our main contributions are:

[1] We evaluate the performance of standard architectures for natural images

such as ImageNet, as well as a family of non-standard but smaller and simpler

models, on two large scale medical imaging tasks, for which transfer learning

is currently the norm. We find that (i) in all of these cases, transfer does not

significantly help performance (ii) smaller, simpler convolutional architectures

perform comparably to standard ImageNet models (iii) ImageNet performance

is not predictive of medical performance. These conclusions also hold in the very

small data regime.

[2] Given the comparable performance, we investigate whether using pre-

trained weights leads to different learned representations, by using (SV)CCA

[253] to directly analyze the hidden representations. We find that pretraining

does affect the hidden representations, but there is a confounding issue of model

size, where the large, standard ImageNet models do not change significantly

through the fine-tuning process, as evidenced through surprising correlations

between representational similarity at initialization and after convergence.

[3] Using further analysis and weight transfusion experiments, where we

partially reuse pretrained weights, we isolate locations where meaningful feature

reuse does occur, and explore hybrid approaches to transfer learning where

143

Figure 6.1: Example images from the ImageNet, the retinal fundus photographs, and the
CheXpert datasets, respectively. The fundus photographs and chest x-rays have much
higher resolution than the ImageNet images, and are classified by looking for small local
variations in tissue.

a subset of pretrained weights are used, and other parts of the network are

redesigned and made more lightweight.

[4] We show there are also feature-independent benefits to pretraining — reusing

only the scaling of the pretrained weights but not the features can itself lead to

large gains in convergence speed.

6.1 Datasets

Our primary dataset, the Retina data, consists of retinal fundus photographs [102],

large 587 × 587 images of the back of the eye. These images are used to diagnose

a variety of eye diseases including Diabetic Retinopathy (DR) [6]. DR is graded

on a five-class scale of increasing severity [1]. Grades 3 and up are referable

DR (requiring immediate specialist attention), while grades 1 and 2 correspond

to non-referable DR. As in prior work [102, 3] we evaluate via AUC-ROC on

identifying referable DR.

We also study a second medical imaging dataset, CheXpert [138], which

consists of chest x-ray images (resized to 224×224), which can be used to diagnose

5 different thoracic pathologies: atelectasis, cardiomegaly, consolidation, edema

and pleural effusion. We evaluate our models on the AUC of diagnosing each of

144

these pathologies. Figure 6.1 shows some example images from both datasets

and ImageNet, demonstrating drastic differences in visual features among those

datasets.

6.2 Models and Performance Evaluation of Transfer Learning

To lay the groundwork for our study, we select multiple neural network architec-

tures and evaluate their performance when (1) training from random initializa-

tion and (2) doing transfer learning from ImageNet. We train both standard, high

performing ImageNet architectures that have been popular for transfer learning,

as well as a family of significantly smaller convolutional neural networks, which

achieve comparable performance on the medical tasks.

As far as we are aware, there has been little work studying the effects of trans-

fer learning from ImageNet on smaller, non-standard ImageNet architectures.

(For example, [236] studies a different model, but does not evaluate the effect

of transfer learning.) This line of investigation is especially important in the

medical setting, where large, computationally expensive models might signif-

icantly impede mobile and on-device applications. Furthermore, in standard

ImageNet models, most of the parameters are concentrated at the top, to perform

the 1000-class classification. However, medical diagnosis often has considerably

fewer classes – both the retinal fundus images and chest x-rays have just 5 classes

– likely meaning that ImageNet models are highly overparametrized.

We find that across both datasets and all models, transfer learning does not

significantly affect performance. Additionally, the family of smaller lightweight

145

convolutional networks performs comparably to standard ImageNet models,

despite having significantly worse accuracy on ImageNet – the ImageNet task

is not necessarily a good indication of success on medical datasets. Finally, we

observe that these conclusions also hold in the setting of very limited data.

6.2.1 Description of Models

For the standard ImageNet architectures, we evaluate ResNet50 [115] and

Inception-v3 [305], which have both been used extensively in medical transfer

learning applications [3, 102, 336]. We also design a family of simple, smaller con-

volutional architectures. The basic building block for this family is the popular

sequence of a (2d) convolution, followed by batch normalization [137] and a relu

activation. Each architecture has four to five repetitions of this basic layer. We

call this model family CBR. Depending on the choice of the convolutional filter

size (fixed for the entire architecture), the number of channels and layers, we get

a family of architectures with size ranging from a third of the standard ImageNet

model size (CBR-LargeT, CBR-LargeW) to one twentieth the size (CBR-Tiny).

Full architecture details are in the Appendix.

6.2.2 Results

We evaluate three repetitions of the different models and initializations (random

initialization vs pretrained weights) on the two medical tasks, with the result

shown in Tables 6.1, 6.2. There are two possibilities for repetitions of transfer

146

Dataset Model Architecture Random Init Transfer

Retina Resnet-50 96.4% ± 0.05 96.7% ± 0.04
Retina Inception-v3 96.6% ± 0.13 96.7% ± 0.05
Retina CBR-LargeT 96.2% ± 0.04 96.2% ± 0.04
Retina CBR-LargeW 95.8% ± 0.04 95.8% ± 0.05
Retina CBR-Small 95.7% ± 0.04 95.8% ± 0.01
Retina CBR-Tiny 95.8% ± 0.03 95.8% ± 0.01

Dataset Model Architecture Parameters ImageNet Top5

Retina Resnet-50 23570408 92.% ± 0.06
Retina Inception-v3 22881424 93.9%
Retina CBR-LargeT 8532480 77.5% ± 0.03
Retina CBR-LargeW 8432128 75.1% ± 0.3
Retina CBR-Small 2108672 67.6% ± 0.3
Retina CBR-Tiny 1076480 73.5% ± 0.05

Table 6.1: Transfer learning and random initialization perform comparably across
both standard ImageNet architectures and simple, lightweight CNNs for AUCs from
diagnosing moderate DR. Both sets of models also have similar AUCs, despite signif-
icant differences in size and complexity. Model performance on DR diagnosis is also
not closely correlated with ImageNet performance, with the small models performing
poorly on ImageNet but very comparably on the medical task.

learning: we can have a fixed set of pretrained weights and multiple training

runs from that initialization, or for each repetition, first train from scratch on

ImageNet and then fine-tune on the medical task. We opt for evaluating the

former, as that is the standard method used in practice. For all models except

for Inceptionv3, we first train on ImageNet to get the pretrained weights. For

Inceptionv3, we used the pretrained weights provided by [293].

Table 6.1 shows the model performances on the Retina data (AUC of iden-

tifying moderate Diabetic Retinopathy (DR), described in Section 6.1), along

with ImageNet top 5 accuracy. Firstly, we see that transfer learning has minimal

effect on performance, not helping the smaller CBR architectures at all, and only

providing a fraction of a percent gain for Resnet and Inception. Next, we see

that despite the significantly lower performance of the CBR architectures on

147

Model Architecture Atelectasis Cardiomegaly Consolidation

Resnet-50 79.52±0.31 75.23±0.35 85.49±1.32
Resnet-50 (trans) 79.76±0.47 74.93±1.41 84.42±0.65
CBR-LargeT 81.52±0.25 74.83±1.66 88.12±0.25
CBR-LargeT (trans) 80.89±1.68 76.84±0.87 86.15±0.71
CBR-LargeW 79.79±0.79 74.63±0.69 86.71±1.45
CBR-LargeW (trans) 80.70±0.31 77.23±0.84 86.87±0.33
CBR-Small 80.43±0.72 74.36±1.06 88.07±0.60
CBR-Small (trans) 80.18±0.85 75.24±1.43 86.48±1.13
CBR-Tiny 80.81±0.55 75.17±0.73 85.31±0.82
CBR-Tiny (trans) 80.02±1.06 75.74±0.71 84.28±0.82

Model Architecture Edema Pleural Effusion

Resnet-50 88.34±1.17 88.70±0.13
Resnet-50 (trans) 88.89±1.66 88.07±1.23
CBR-LargeT 87.97±1.40 88.37±0.01
CBR-LargeT (trans) 89.03±0.74 88.44±0.84
CBR-LargeW 84.80±0.77 86.53±0.54
CBR-LargeW (trans) 89.57±0.34 87.29±0.69
CBR-Small 86.20±1.35 86.14±1.78
CBR-Small (trans) 89.09±1.04 87.88±1.01
CBR-Tiny 84.87±1.13 85.56±0.89
CBR-Tiny (trans) 89.81±1.08 87.69±0.75

Table 6.2: Transfer learning provides mixed performance gains on chest x-rays. Per-
formances (AUC%) of diagnosing different pathologies on the CheXpert dataset. Again
we see that transfer learning does not help significantly, and much smaller models
performing comparably.

ImageNet, they perform very comparably to Resnet and Inception on the Retina

task. These same conclusions are seen on the chest x-ray results, Table 6.2. Here

we show the performance AUC for the five different pathologies (Section 6.1). We

again observe mixed gains from transfer learning. For Atelectasis, Cardiomegaly

and Consolidation, transfer learning performs slightly worse, but helps with

Edema and Pleural Effusion.

148

6.2.3 The Very Small Data Regime

We conducted additional experiments to study the effect of transfer learning

in the very small data regime. Most medical datasets are significantly smaller

than ImageNet, which is also the case for our two datasets. However, our

datasets still have around two hundred thousand examples, and other settings

many only have a few thousand. To study the effects in this very small data

regime, we trained models on only 5000 datapoints on the Retina dataset, and

examined the effect of transfer learning. The results, in Table 6.3, suggest that

Model Rand Init Pretrained

Resnet50 92.2% 94.6%
CBR-LargeT 93.6% 93.9%
CBR-LargeW 93.6% 93.7%

Table 6.3: Benefits of transfer learning in the small data regime are largely due to
architecture size. AUCs when training on the Retina task with only 5000 datapoints. We
see a bigger gap between random initialization and transfer learning for Resnet (a large
model), but not for the smaller CBR models.

while transfer learning has a bigger effect with very small amounts of data, there

is a confounding effect of model size – transfer primarily helps the large models

(which are designed to be trained with a million examples) and smaller models

again show little difference between transfer and random initialization.

6.3 Representational Analysis of the Effects of Transfer

In Section 6.2 we saw that transfer learning and training from random initial-

ization result in very similar performance across different neural architectures

and tasks. This gives rise to some natural questions about the effect of transfer

149

learning on the kinds of representations learned by the neural networks. Most

fundamentally, does transfer learning in fact result in any representational dif-

ferences compared to training from random initialization? Or are the effects of

the initialization lost? Does feature reuse take place, and if so, where exactly? In

this section, we provide some answers to these basic questions. Our approach

directly analyzes and compares the hidden representations learned by different

populations of neural networks, using (SV)CCA [253, 220], revealing an impor-

tant dependence on model size, and differences in behavior between lower and

higher layers. These insights, combined with results Section 6.4 suggest new,

hybrid approaches to transfer learning.

Quantitatively Studying Hidden Representations with (SV)CCA To under-

stand how pretraining affects the features and representations learned by the

models, we would like to (quantitatively) study the learned intermediate func-

tions (latent layers). Analyzing latent representations is challenging due to their

complexity and the lack of any simple mapping to inputs, outputs or other layers.

A recent tool that effectively overcomes these challenges is (Singular Vector)

Canonical Correlation Analysis, (SV)CCA [253, 220], which has been used to

study latent representations through training, across different models, alternate

training objectives, and other properties [253, 220, 278, 201, 95, 169, 329]. Rather

than working directly with the model parameters or neurons, CCA works with

neuron activation vectors — the ordered collection of outputs of the neuron on a

sequence of inputs. Given the activation vectors for two sets of neurons (say,

corresponding to distinct layers), CCA seeks linear combinations of each that

are as correlated as possible. We adapt existing CCA methods to prevent the

size of the activation sets from overwhelming the computation in large models

(details in Appendix D.3), and apply them to compare the latent representations

150

Resnet50

Ince
ptio

nv3
0.21

0.22

0.23

0.24

0.25

0.26

0.27

C
C

A
 S

im
ila

ri
ty

Representational Similarity Higher Layers
 ImageNet Models

CBR-LargeW

CBR-Small

CBR-Tiny
0.350

0.355

0.360

0.365

0.370

0.375

0.380

Representational Similarity Higher Layers
 CBRs

CCA(Rand, ImNet)

CCA(Rand, Rand)

Figure 6.2: Pretrained weights give rise to different hidden representations than
training from random initialization for large models. We compute CCA similarity
scores between representations learned using pretrained weights and those from random
initialization. We do this for the top two layers (or stages for Resnet, Inception) and
average the scores, plotting the results in orange. In blue is a baseline similarity score, for
representations trained from different random initializations. We see that representations
learned from random initialization are more similar to each other than those learned
from pretrained weights for larger models, with less of a distinction for smaller models.

of corresponding hidden layers of different pairs of neural networks, giving a

CCA similarity score of the learned intermediate functions.

Transfer Learning and Random Initialization Learn Different Representa-

tions Our first experiment uses CCA to compare the similarity of the hidden

representations learned when training from pretrained weights to those learned

when training from random initialization. We use the representations learned at

the top two layers (for CBRs) or stages (for Resnet, Inception) before the output

layer, averaging their similarity scores. As a baseline to compare to, we also

look at CCA similarity scores for the same representations when training from

random initialization with two different seeds (different initializations and gra-

dient updates). The results are shown in Figure 6.2. For larger models (Resnet,

Inception), there is a clear difference between representations, with the similarity

of representations between training from random initialization and pretrained

151

weights (orange) noticeably lower than representations learned independently

from different random initializations (blue). However for smaller models (CBRs),

the functions learned are more similar.

Larger Models Change Less Through Training The reasons underlying this

difference between larger and smaller models becomes apparent as we further

study the hidden representations of all the layers. We find that larger models

change much less during training, especially in the lowest layers. This is true even

when they are randomly initialized, ruling out feature reuse as the sole cause, and

implying their overparametrization for the task. This is in line with other recent

findings [371].

In Figure 6.3, we look at per-layer representational similarity before/after

finetuning, which shows that the lowest layer in Resnet (a large model), is

significantly more similar to its initialization than in the smaller models. This

plot also suggests that any serious feature reuse is restricted to the lowest couple

of layers, which is where similarity before/after training is clearly higher for

pretrained weights vs random initialization. In Figure 6.4, we plot the CCA

similarity scores between representations using pretrained weights and random

initialization at initialization vs after training, for the lowest layer (conv1) as well

as higher layers, for Resnet and CBR-Small. Large models changing less through

training is evidenced by a surprising correlation between the CCA similarities

for Resnet conv1, which is not true for higher layers or the smaller CBR-Small

model.

Filter Visualizations and the Absence of Gabors As a final study of how

pretraining affects the model representations, we visualize some of the filters

152

conv1
block1

block2
block3

block4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Resnet50 Per Layer CCA Similarity
 Before/After Finetuning

RandInit

Pretrained

Pretrained - RandInit

pool1
pool2

pool3
pool4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CBR-LargeW Per Layer CCA Similarity
 Before/After Finetuning

RandInit

Pretrained

Pretrained - RandInit

pool1
pool2

pool3
pool4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CBR-Small Per Layer CCA Similarity
 Before/After Finetuning

RandInit

Pretrained

Pretrained - RandInit

Figure 6.3: Per-layer CCA similarities before and after training on medical task. For
all models, we see that the lowest layers are most similar to their initializations, and this
is especially evident for Resnet50 (a large model). We also see that feature reuse is mostly
restricted to the bottom two layers (stages for Resnet) — the only place where similarity
with initialization is significantly higher for pretrained weights (grey dotted lines shows
the difference in similarity scores between pretrained and random initialization).

153

0.560 0.565 0.570 0.575 0.580 0.585 0.590

CCA Similarity At Init

0.620

0.625

0.630

0.635

0.640

0.645

0.650

C
C

A
 S

im
ila

ri
ty

 A
ft

e
r

T
ra

in
in

g R^2=0.838

Resnet50 CCA(Rand, Rand) Conv1
 Before vs After Finetune, R^2=0.838

0.56 0.57 0.58 0.59

CCA Similarity At Init

0.605

0.610

0.615

0.620

0.625

0.630

0.635

0.640

C
C

A
 S

im
ila

ri
ty

 A
ft

e
r

T
ra

in
in

g R^2=0.752

Resnet50 CCA(Rand, Imnet) Conv1
 Before vs After Finetune, R^2=0.752

0.61 0.62 0.63 0.64 0.65 0.66

CCA Similarity At Init

0.70

0.71

0.72

0.73

0.74

0.75

C
C

A
 S

im
ila

ri
ty

 A
ft

e
r

T
ra

in
in

g R^2=0.197

CBR-Small CCA(Rand, Rand) Conv1
 Before vs After Finetune, R^2=0.197

0.580 0.585 0.590 0.595 0.600 0.605

CCA Similarity At Init

0.63

0.64

0.65

0.66

0.67

0.68

C
C

A
 S

im
ila

ri
ty

 A
ft

e
r

T
ra

in
in

g R^2=0.160

CBR-Small CCA(Rand, Imnet) Conv1
 Before vs After Finetune, R^2=0.160

0.355 0.360 0.365 0.370 0.375

CCA Similarity At Init

0.262

0.264

0.266

0.268

0.270

C
C

A
 S

im
ila

ri
ty

 A
ft

e
r

T
ra

in
in

g R^2=0.008

Resnet50 CCA(Rand, Rand) Higher Layers
 Before vs After Finetune, R^2=0.008

0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325

CCA Similarity At Init

0.236

0.238

0.240

0.242

C
C

A
 S

im
ila

ri
ty

 A
ft

e
r

T
ra

in
in

g

R^2=0.001

Resnet50 CCA(Rand, Imnet) Higher Layers
 Before vs After Finetune, R^2=0.001

0.482 0.484 0.486 0.488 0.490

CCA Similarity At Init

0.368

0.370

0.372

0.374

0.376

0.378

0.380

C
C

A
 S

im
ila

ri
ty

 A
ft

e
r

T
ra

in
in

g R^2=0.079

CBR-Small CCA(Rand, Rand) Higher Layers
 Before vs After Finetune, R^2=0.079

0.378 0.380 0.382 0.384 0.386 0.388 0.390

CCA Similarity At Init

0.360

0.365

0.370

0.375

C
C

A
 S

im
ila

ri
ty

 A
ft

e
r

T
ra

in
in

g

R^2=0.322

CBR-Small CCA(Rand, Imnet) Higher Layers
 Before vs After Finetune, R^2=0.322

Figure 6.4: Large models move less through training at lower layers: similarity at
initialization is highly correlated with similarity at convergence for large models. We
plot CCA similarity of Resnet (conv1) initialized randomly and with pretrained weights
at (i) initialization, against (ii) CCA similarity of the converged representations (top row
second from left.) We also do this for two different random initializations (top row, left).
In both cases (even for random initialization), we see a surprising, strong correlation
between similarity at initialization and similarity after convergence (R2 = 0.75, 0.84). This
is not the case for the smaller CBR-Small model, illustrating the overparametrization of
Resnet for the task. Higher must likely change much more for good task performance.

154

of conv1 for Resnet and CBR-Small (both 7x7 kernels), before and after training

on the Retina task. The filters are shown in Figure 6.5, with visualizations

for chest x-rays in the Appendix. These add evidence to the aformentioned

observation: the Resnet filters change much less than those of CBR-Small. In

contrast, CBR-Small moves more from its initialization, and has more similar

learned filters in random and pretrained initialization. Interestingly, CBR-Small

does not appear to learn Gabor filters when trained from scratch (bottom row

second column). Comparing the third and fourth columns of the bottom row, we

see that CBR-Small even erases some of the Gabor filters that it is initialized with

in the pretrained weights.

6.4 Convergence: Feature Independent Benefits and Weight

Transfusion

In this section, we investigate the effects of transfer learning on convergence

speed, finding that: (i) surprisingly, transfer offers feature independent benefits to

convergence simply through better weight scaling (ii) using pretrained weights

from the lowest two layers/stages has the biggest effect on convergence — further

supporting the findings in the previous section that any meaningful feature reuse

is concentrated in these lowest two layers (Figure 6.3.) These results suggest some

hybrid approaches to transfer learning, where only a subset of the pretrained

weights (lowest layers) are used, with a lightweight redesign to the top of the

network, and even using entirely synthetic features, such as synthetic Gabor

filters (Appendix D.6.3). We show these hybrid approaches capture most of the

benefits of transfer and enable greater flexibility in its application.

155

(a) Resnet Init (b) Resnet Final (c) Res-trans Init

(d) Res-trans final (e) CBR-Small Init (f) CBR-Small Final

(g) CBR Trans (h) CBR Trans Final

Figure 6.5: Visualization of conv1 filters shows the remains of initialization after
training in Resnet, and the lack of and erasing of Gabor filters in CBR-Small. We
visualize the filters before and after training from random initialization and pretrained
weights for Resnet (top row) and CBR-Small (bottom row). Comparing the similarity of
(e) to (f) and (g) to (h) shows the limited movement of Resnet through training, while
CBR-Small changes much more. We see that CBR does not learn Gabor filters when
trained from scratch (f), and also erases some of the pretrained Gabors (compare (g) to
(h).)

0 20000 40000 60000 80000 100000 120000 140000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

Inceptionv3

Imagenet Transfer

Random Init

Mean Var

0 20000 40000 60000 80000 100000 120000 140000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

Resnet50

Imagenet Transfer

Random Init

Mean Var
0 20000 40000 60000 80000 100000

Train Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e
st

 A
U

C

Imagenet Transfer

Random Init

Mean Var

Figure 6.6: Using only the scaling of the pretrained weights (Mean Var Init) helps
with convergence speed. The figures compare the standard transfer learning and the
Mean Var initialization scheme to training from scratch. On both the Retina data (a-b) and
the CheXpert data (c) (with Resnet50 on the Consolidation disease), we see convergence
speedups.

156

0 20000 40000 60000 80000 100000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

Resnet50 Weight Transfusion

RandInit, 69069 steps > 0.91AUC

Conv1, 31031 steps > 0.91AUC

Block1, 15215 steps > 0.91AUC

Block2, 8608 steps > 0.91AUC

Block3, 8208 steps > 0.91AUC

Block4, 7407 steps > 0.91AUC

Transfer, 8008 steps > 0.91AUC

None (R
and)

Conv1

Block
1

Block
2

Block
3

Block
4

All (
Tra

nsfe
r)

Weight Transfusion Up To Layer

0

10000

20000

30000

40000

50000

60000

70000

80000

Fi
rs

t
T
ra

in
 S

te
p
 w

it
h
 A

U
C

 >
 0

.9
1 Resnet50 Weight Transfusion Convergence

Figure 6.7: Reusing a subset of the pretrained weights (weight transfusion), further
supports only the lowest couple of layers performing meaningful feature reuse. We
initialize a Resnet with a contiguous subset of the layers using pretrained weights (weight
transfusion), and the rest randomly, and train on the Retina task. On the left, we show
the convergene plots when transfusing up to conv1 (just one layer), up to block 1 (conv1
and all the layers in block1), etc up to full transfer. On the right, we plot the number
of train steps taken to reach 91% AUC for different numbers of transfused weights.
Consistent with findings in Section 6.3, we observe that reusing the lowest layers leads
to the greatest gain in convergence speed. Perhaps surprisingly, just reusing conv1 gives
the greatest marginal convergence speedup, even though transfusing weights for a block
means several new layers are using pretrained weights.

Feature Independent Benefits of Transfer: Weight Scalings We consistently

observe that using pretrained weights results in faster convergence. One explana-

tion for this speedup is that there is significant feature reuse. However, the results

of Section 6.3 illustrate that there are many confounding factors, such as model

size, and feature reuse is likely limited to the lowest layers. We thus tested to see

whether there were feature independent benefits of the pretrained weights, such as

better scaling. In particular, we initialized a iid weights fromN(µ̃, σ̃2), where µ̃ and

σ̃2 are the mean and variance of W̃, the pretrained weights. Doing this for each

layer separately inherits the scaling of the pretrained weights, but destroys all of

the features. We called this the Mean Var init, and found that it significantly helps

speed up convergence (Figure 6.6.) Several additional experiments studying

batch normalization, weight sampling, etc are in the Appendix.

157

0 20000 40000 60000 80000 100000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0
T
e
st

 A
U

C
Resnet50 Hybrid Approaches

RandInit, 69069 steps > 0.91AUC

Synthetic Gabor, 25425 steps > 0.91AUC

Slim, 8208 steps > 0.91AUC

Transfer, 8008 steps > 0.91AUC

0 20000 40000 60000 80000 100000 120000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

CBR-LargeW Hybrid Approaches

RandInit, 104104 steps > 0.91AUC

Synthetic Gabor, 82082 steps > 0.91AUC

Transfer, 19419 steps > 0.91AUC

Figure 6.8: Hybrid approaches to transfer learning: reusing a subset of the weights
and slimming the remainder of the network, and using synthetic Gabors for conv1.
For Resnet, we look at the effect of reusing pretrained weights up to Block2, and slimming
the remainder of the network (halving the number of channels), randomly initializing
those layers, and training end to end. This matches performance and convergence of
full transfer learning. We also look at initializing conv1 with synthetic Gabor filters (so
no use of pretrained weights), and the rest of the network randomly, which performs
equivalently to reusing conv1 pretrained weights. This result generalizes to different
architectures, e.g. CBR-LargeW on the right.

Weight Transfusions and Feature Reuse We next study whether the results

suggested by Section 6.3, that meaningful feature reuse is restricted to the lowest

two layers/stages of the network is supported by the effect on convergence speed.

We do this via a weight transfusion experiment, transfering a contiguous set of

some of the pretrained weights, randomly initializing the rest of the network,

and training on the medical task. Plotting the training curves and steps taken

to reach a threshold AUC in Figure 6.7 indeed shows that using pretrained

weights for lowest few layers has the biggest training speedup. Interestingly,

just using pretrained weights for conv1 for Resnet results in the largest gain,

despite transfusion for a Resnet block meaning multiple layers are now reusing

pretrained weights.

Takeaways: Hybrid Approaches to Transfer Learning The transfusion re-

158

sults suggest some hybrid, more flexible approaches to transfer learning. Firstly,

for larger models such as Resnet, we could consider reusing pretrained weights

up to e.g. Block2, redesiging the top of the network (which has the bulk of

the parameters) to be more lightweight, initializing these layers randomly, and

training this new Slim model end to end. Seeing the disproportionate importance

of conv1, we might also look at the effect of initializing conv1 with synthetic Gabor

filters (see Appendix D.6.3 for details) and the rest of the network randomly.

In Figure 6.8 we illustrate these hybrid approaches. Slimming the top of the

network in this way offers the same convergence and performance as transfer

learning, and using synthetic Gabors for conv1 has the same effect as pretrained

weights for conv1. These variants highlight many new, rich and flexible ways to

use transfer learning.

6.5 Chapter Summary and Discussion

In this chapter, we have present results on many central questions on transfer

learning for medical imaging applications. Having benchmarked both stan-

dard ImageNet architectures and non-standard lightweight models (itself an

underexplored question) on two large scale medical tasks, we find that transfer

learning offers limited performance gains and much smaller architectures can

perform comparably to the standard ImageNet models. Our exploration of repre-

sentational similarity and feature reuse reveals surprising correlations between

similarities at initialization and after training for standard ImageNet models,

providing evidence of their overparametrization for the task. We also find that

meaningful feature reuse is concentrated at the lowest layers and explore more

159

flexible, hybrid approaches to transfer suggested by these results, finding that

such approaches maintain all the benefits of transfer and open up rich new possi-

bilities. We also demonstrate feature-independent benefits of transfer learning

for better weight scaling and convergence speedups.

160

Part IV

Human-AI Collaboration

161

CHAPTER 7

DIRECT UNCERTAINTY PREDICTION FOR MEDICAL SECOND

OPINIONS

In the following two chapters, we take a fully trained AI system and examine

considerations for being able to meaningfully combine it with human experts,

a central factor in successful deployment in applications such as medicine. In

this chapter, we begin by studying methods that can enable these AI systems to

effectively predict human expert error. This predictive task is both of independent

interest (e.g. in flagging patients who might benefit from a medical second

opinion), and crucially, in Chapter 8, it informs the effective combination of

human experts and the AI system. This provides better performance than either

entity alone, and also raises broader points on the evaluation of machine learning

systems for deployment.

7.1 The Doctor Disagreement Problem and Overview of Re-

sults

In both the practice of machine learning and the practice of medicine, a serious

challenge is presented by disagreements amongst human labels. Machine learn-

ing classification models are typically developed on large datasets consisting

of (xi, yi) (data instance, label) pairs. These are collected [271, 344] by assign-

ing each raw instance xi to multiple human evaluators, yielding several labels

y(1)
i , y(2)

i , ...y(ni)
i . Unsurprisingly, these labels often have disagreements amongst

them and must be carefully aggregated to give a single target value.

162

This label disagreement issue becomes a full-fledged clinical problem in

the healthcare domain. Despite the human labellers now being highly trained

medical experts (doctors), disagreements (on the diagnosis) persist [324, 4, 1, 102,

255]. One example is [324], where agreement between referral and final diagnoses

in a cohort of two hundred and eighty patients is studied. Exact agreement is

only found in 12% of cases, but more concerningly, 21% of cases have significant

disagreements. This latter group also turns out to be the most costly to treat.

Other examples are given by [53], a study of tuberculosis diagnosis, showing that

radiologists disagree with colleagues 25% of the time, and with themselves 20%

of the time, and [72], studying disagreement on cancer diagnosis from breast

biopsies.

These disagreements arise not solely from random noise [268], but from

expert judgment and bias. In particular, some patient cases xi intrinsically contain

features that result in greater expert uncertainty (e.g. Figure 7.2.) This motivates

applying machine learning to predict which patients are likely to give rise to the

most doctor disagreement. We call this the medical second opinion problem. Such

a model could be deployed to automatically identify patients that might need a

second doctor’s opinion.

Mathematically, given a patient instance xi, we are interested in assigning a

scalar uncertainty score to xi, h(xi) that reflects the amount of expert disagreement

on xi. For each xi, we have multiple labels y(1)
i , y(2)

i , ...y(ni)
i , each corresponding to a

different individual doctor’s grade.

One natural approach is to first train a classifier mapping xi to the y(j)
i , e.g.

via the empirical distribution of labels p̂i. For ungraded examples, a measure of

163

Figure 7.1: Different ways of computing an uncertainty scores. An uncertainty score
h(xi) for xi can be computed by the two step process of Uncertainty via Classification:
training a classifier on pairs (data instance, empirical grade distribution from y(j)

i) (xi,pi),
and then post processing the classifier output distribution to get an uncertainty score.
h(xi) can also be learned directly on xi, i.e. Direct Uncertainty Prediction. DUP models
are trained on pairs (data instance, target uncertainty function on empirical grade distri-
bution), (xi,U(pi)). Theoretical and empirical results support the greater effectiveness of
Direct Uncertainty Prediction.

spread of the output distribution of the classifier (e.g. variance) could be used to

give a score. We call this Uncertainty via Classification (UVC).

An alternate approach, Direct Uncertainty Prediction (DUP), is to learn a func-

tion hdup directly mapping xi to a scalar uncertainty score. The basic contrast with

Uncertainty via Classification is illustrated in Figure 7.1. Our central method-

ological finding is that Direct Uncertainty Prediction (provably) works better

than the two step process of Uncertainty via Classification.

In particular, our three main contributions are the following:

1. We define simple methods of performing Direct Uncertainty Prediction on

164

data instances xi with multiple noisy labels. We prove that under a natural

model for the data, DUP gives an unbiased estimate of the true uncertainty

scores U(xi), while Uncertainty via Classification has a bias term. We then

demonstrate this in a synthetic setting of mixtures of Gaussians, and on

an image blurring detection task on the standard SVHN and CIFAR-10

benchmarks.

2. We train UVC and DUP models on a large-scale medical imaging task.

As predicted by the theory, we find that DUP models perform better at

identifying patient cases that will result in large disagreements amongst

doctors.

3. On a small gold standard adjudicated test set, we study how well our exist-

ing DUP and UVC models can identify patient cases where the individual

doctor grade disagrees with a consensus adjudicated diagnosis. This adju-

dicated grade is a proxy for the best possible doctor diagnosis. All DUP

models perform better than all UVC models on all evaluations on this task,

in both an uncertainty score setting and a ranking application.

7.2 Direct Uncertainty Prediction

Our core prediction problem, motivated by identifying patients who need a

medical second opinion, centers around learning a scalar uncertainty scoring function

h(x) on patient instances x, which signifies the amount of expert disagreement

arising from x.

To do so, we must first define a target uncertainty scoring function U(·). Our

165

0 1 2 3 4 5 6
Label Value

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Histogram of Doctor Grades for
 Image 1 with Adj Grade 1

0 1 2 3 4 5 6
Label Value

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Histogram of Doctor Grades for
 Image 2 with Adj Grade 1

Figure 7.2: Patient cases have features resulting in higher doctor disagreement. The
two rows give example datapoints in our dataset. The patient images xi, x j are in the left
column, and on the right we have the empirical probability distribution (histogram) of
the multiple individual doctor DR grades. For the top image, all doctors agreed that
the grade should be 1, while there was a significant spread for the bottom image. When
later performing an adjudication process (Section 7.5), where doctors discuss their initial
diagnoses with each other and come to a consensus, both patient cases were given an
adjudicated DR grade of 1.

data consists of pairs of the form (patient features, multiple individual doctor

labels), (xi; y(1)
i , y(2)

i , ...y(ni)
i) (Figure 7.2). Letting c1, ..., ck be the different possible

doctor grades, we can define the empirical grade distribution – the empirical

histogram: p̂i = [p̂(1)
i , ..., p̂(k)

i], with

p̂(l)
i =

∑
j 1y(j)

i =cl

ni

Our target uncertainty scoring function U(·) then computes an uncertainty score

for xi using the empirical histogram p̂i. One such function, which computes the

probability that two draws from the empirical histogram will disagree is

Udisagree(xi) = Udisagree(p̂i) = 1 −
k∑

l=1

(p̂(l)
i)2 (1)

166

Another uncertainty score, which penalizes larger disagreements more, is the

variance:

Uvar(xi) = Uvar(p̂i) =

k∑
l=1

cl · (p̂(l)
i)2 −

(∑
cl · p̂

(l)
i

)2
(2)

For a large family of these uncertainty scoring functions (including entropy,

variance, etc) we can show that Direct Uncertainty Prediction gives an unbiased

estimate of U(p̂i), whereas uncertainty via classification has a bias term.

The key observation is that while we want our model to predict doctor

disagreement, it does not see all the patient information the doctors do. In

particular, the model must predict doctor disagreement based off of only xi

(in our setting, images). In contrast, human doctors see not only xi but other

extensive information, such as patient medical history, family medical history,

patient characteristics (age, symptom descriptions, etc) [57].

Letting o denote all patient features seen by the doctors, we can think of

xi as being the image of o under a (many to one) mapping g, which hides the

additional patient information, i.e. xi = g(o). Suppose there are k possible doctor

grades, c1, .., ck. Let f denote the joint distribution over patient features and

doctor grades. In particular, let O be a random variable representing patient

features, and Y the doctor label for O. Then our density function assigns a

probability to (patient features, doctor grade) pairs (o, y).

This can also be defined with a vectorized version of the grades: let Yl = 1Y=cl ,

the event that O is diagnosed as cl. Then we define the vector Y = [Y1, ...,Yk].

f is therefore also a density over the points f (O = o,Y = y). Let the marginal

probability of the patient features be fO, with fO =
∫

y f (O, y).

167

Given an uncertainty scoring function U(·), we would like to predict the

disagreement in labels amongst doctors who have seen the patient features O.

But as the patient features O and doctor grades Y are jointly distributed according

to f , this is just the uncertainty of the expected value of Y under the posterior of

Y given o. In particular, we are interested in predicting:

U
(∫

y
y · f (Y = y|O)

)
= U(E[Y|O])

This is a function taking as input a patient’s features. For a particular patient’s

features o, we get a scalar uncertainty score given by

U(E[Y|O = o])

However, our model doesn’t see o, but only x = g(O). We make the mild

assumptions that Y is conditionally independent of g(O) given O, and that g(·)

truly hides information, loosely that O|g(O) = x is not a point mass (see Appendix

for details.) In this setting, direct uncertainty prediction, hdup computes the

expectation of the uncertainty scores of all the possible posteriors, i.e.

hdup(x) = E
[
U(E[Y|O])|g(O) = x

]
=

∫
o

U(E[Y|O = o]) fO(o|g(O) = x)

Uncertainty via classification huvc does this in reverse order, first computing the

expected posterior, and assigning an uncertainty score to that:

huvc(x) = U(E[Y|g(O) = x])

= U
(∫

o
E[Y|O = o] fO(o|g(O) = x)

)
In this setting we can show

Theorem 5. Using the above notation

168

(i) hdup is an unbiased estimate of the true uncertainty

(ii) For any concave uncertainty scoring function U(·) (which includes Udisagree,Uvar),

uncertainty via classification, huvc has a bias term.

The full proof is the Appendix. A sketch is as follows: the unbiased result

arises from the tower rule (law of total expectations). The bias of huvc follows by

the concavity of U(), Jensen’s inequality, and the fact that g(·) truly hides some

patient features. For Udisagree and Uvar, we can compute this bias term exactly (full

computation in Appendix):

Corollary 1. For Udisagree,Uvar the bias term is:

(i) Bias of huvc with Udisagree:

Eg(O)

∑
l

VarO|g(O)

(
E[Yl|O]

∣∣∣∣g(O)
)

(ii) Bias of huvc with Uvar:

Eg(O)

VarO|g(O)

∑
l

l · E[Yl|O]

∣∣∣∣∣∣∣ g(O)

In Sections 7.4, 7.5 we train both Direct Uncertainty Prediction (DUP) models

and Uncertainty Via Classification (UVC) models on a large scale medical imag-

ing task. However, to gain intuition for the theoretical results, we first study a

toy case on a mixture of Gaussians.

7.2.1 Toy Example on Mixture of Gaussians

To illustrate the formalism in a simplified setting, we consider the following

pedagogical toy example. Suppose our data is generated by a mixture of k

169

Model Type (3d, 5G) (5d, 4G) (10d, 4G)

UVC 69.1% 62.0% 56.0%
DUP 74.6% 71.2% 63.4%

Table 7.1: DUP and UVC trained to predict disagreement on mixtures of Gaussians.
We train DUP and UVC models on different mixtures of Gaussians, with(nd,mG) denot-
ing a mixture of m Gaussians in m dimensions. Results are in percentage AUC over 3
repeats. The means of the Gaussians are drawn iid from a multivariate normal distribu-
tion (full setup in Appendix.) We see that the DUP model performs much better than the
UVC model at identifying datapoints with high disagreement in the labels.

Gaussians. Let fi ∼ N(µi, σ
2
i), and qi be mixture probabilities. Then f (o, y = i) =

qi fi(o) and the marginal fO(o) =
∑k

i=1 qi fi(o). Additionally, the probability of a

particular class l given o, f (y = l|o) is simply ql fl(o)∑k
i=1 qi fi(o)

.

Two 1-D Gaussians: As the first, most simple case, suppose we have two

one dimensional Gaussians, the first, f1 = N(−1, 1) and the second, f2 = N(1, 1).

Assume that the mixture probabilities q1, q2 are equal to 0.5. Given o drawn from

this mixture q1 f1 + q2 f2, we’d like to estimate U(f (y|o)). Suppose the model sees

x = g(o) = |o|, the absolute value of o. Then, DUP can estimate the uncertainty

exactly:

E [U(E[Y|O])|x = |o|] =0.5 · U(E[Y|O = o])

+ 0.5 · U(E[Y|O = −o])

= U(E[Y|O = o])

= U
(
[f (1|o), 1 − f (1|o)]

)
where the third line follows by the symmetry of the two distributions, with

f (1|o) =
0.5 f1(o)

0.5 f1(o) + 0.5 f2(o)

On the other hand, the expected posterior over labels in UVC, E[Y|x = |o|], is just

[0.5, 0.5], as by symmetry, given x = g(o) = |o|, o is equally likely to come from

170

f1 or f2. So UVC outputs a constant uncertainty score U([0.5, 0.5]) for all x = |o|,

despite the true varying uncertainty scores.

Training DUPs and UVCs on Mixture of Gaussians: In Table 7.1 we train

DUPs and UVCs on a few different mixture of Gaussian settings. We generate

data o from a Gaussian mixture with iid centers, and labels for the data using

the posterior over the different centers given o. We use these labels to score o on

its uncertainty (using Udisagree). We then train a model on x = g(o) = |o| to predict

whether x is low or high uncertainty. (Full details in Appendix.) We see that

DUP performs consistently better than UVC.

7.2.2 Example on SVHN and CIFAR-10

Another empirical demonstration is given by training DUP and UVC to predict

label agreement in an image blurring setting. For a source image in SVHN

or CIFAR-10, we first apply a Gaussian blur, with a variance chosen for that

source image. Then, we draw three noisy labels for the source image, where the

noise distribution over labels corresponds to the severity of the image blur. For

example, for an image that has a Gaussian blur of variance 0 (i.e. no blurring),

the distribution over labels is a point mass on the true label. For an image that

has been blurred severely, there is significant mass on incorrect labels. (Exact

distributional details are given in the Appendix.) We train DUP and UVC models

on this dataset and evaluate their ability to predict label disagreement. We

again find that DUP models outperfom UVC models. This is despite the setting

not directly mapping onto the statement of Theorem 5 – there is no obscuring

function g. This suggests the benefits of DUP are more general than the precise

171

Model SVHN (disagree) CIFAR-10 (disagree)

UVC 75.8% 79.1%
DUP 88.0% 85.3%

Table 7.2: DUP and UVC trained to predict label disagreement corresponding to im-
age blurring on SVHN and CIFAR-10. DUP outperforms UVC on predicting label
disagreement on SVHN and CIFAR-10, where the labels are drawn from a noisy distribu-
tion that varies depending on how much blurring the source image has been subjected
to. Full details in Appendix.

theoretical setting. We also observe that the DUP and UVC models learn different

features (see Appendix.)

7.3 Related Work

The challenges posed by expert disagreement is an important one, and prior

work has put forward several approaches to address some of these issues. Under

the assumption that the noise distribution is conditionally independent of the

data instance given the true label, [222, 299, 263, 285] provide theoretical analysis

along with algorithms to denoise the labels as training progresses, or efficiently

collect new labels. However, the conditional independence assumption does

not hold in our setting (Figure 7.2.) Other work relaxes this assumption by

defining a domain specific generative model for how noise arises [217, 351, 326]

with some methods using additional clean data to pretrain models to form a

good prior for learning. Related techniques have also been explored in semantic

segmentation [104, 159]. Modeling uncertainty in the context of noisy data has

also been looked at through Bayesian techniques [148, 310], and (for different

models) in the context of crowdsourcing by [345, 339]. A related line of work

[55, 344] has looked at studying the per labeler error rates, which also requires

172

Task Model Type AUC

Variance Prediction UVC Histogram-E2E 70.6%
Variance Prediction UVC Histogram-PC 70.6%
Variance Prediction DUP Variance-E2E 72.9%
Variance Prediction DUP Variance-P 74.4%
Variance Prediction DUP Variance-PR 74.6%
Variance Prediction DUP Variance-PRC 74.8%

Disagreement Prediction UVC Histogram-E2E 73.4%
Disagreement Prediction UVC Histogram-PC 76.6%
Disagreement Prediction DUP Disagree-P 78.1%
Disagreement Prediction DUP Disagree-PC 78.1%

Variance Prediction DUP Disagree-PC 73.3%
Disagreement Prediction DUP Variance-PRC 77.3%

Table 7.3: Performance (percentage AUC) averaged over three runs for UVC and
DUPs on Variance Prediction and Disagreement Prediction tasks. The UVC baselines,
which first train a classifier on the empirical grade histogram, are denoted Histogram-.
DUPs are trained on either T (disagree)

train or T (var)
train , and denoted Disagree-, Variance- respec-

tively. The top two sets of rows shows the performance of the baseline (and a strength-
ened baseline Histogram-PC using Prelogit embeddings and Calibration) compared to
Variance and Disagree DUPs on the (1) Variance Prediction task (evaluation on T (var)

test)
and (2) Disagreement Prediction task (evaluation on T (disagree)

test). We see that in both of
these settings, the DUPs perform better than the baselines. Additionally, the third set
of rows shows tests a Variance DUP on the disagreement task, and vice versa for the
Disagreement DUP. We see that both of these also perform better than the baselines.

the additional information of labeler ids, an assumption we relax. Most related

is [100], where a multiheaded neural network is used to model different labelers.

Surprisingly however, the best model is independent of image features, which is

the source of signal in our experiments.

7.4 Doctor Disagreements in DR

Our main application studies the effectiveness of Direct Uncertainty Predictors

(DUPs) and Uncertainty via Classification (UVC) in identifying patient cases with

173

high disagreements amongst doctors in a large-scale medical imaging setting.

These patients stand to benefit most from a medical second opinion.

The task contains patient data in the form of retinal fundus photographs [102],

large (587 x 587) images of the back of the eye. These photographs can be used to

diagnose the patient with different kinds of eye diseases. One such eye disease is

Diabetic Retinopathy (DR), which, despite being treatable if caught early enough,

remains a leading cause of blindness [6].

DR is graded on a 5-class scale: a grade of 1 corresponds to no DR, 2 to

mild DR, 3 to moderate DR, 4 to severe and 5 to proliferative DR [1]. There is an

important clinical threshold at grade 3, with grades 3 and above corresponding to

referable DR (needing immediate specialist attention), and 1, 2 being non-referable.

Clinically, the most costly mistake is not referring referable patients, which poses

a high risk of blindness.

Our main dataset T has many features typical of medical imaging datasets.

T has larger but much fewer images than in natural image datasets such as

ImageNet. Each image xi has a few (typically one to three) individual doctor

grades y(1)
i , ..., y(ni)

i . These grades are also very noisy, with more than 20% of the

images having large (referable/non-referable) disagreement amongst the grades.

7.4.1 Task Setup

In this section we describe the setup for training variants of DUPs and UVCs

using a train test split on T . We outline the resulting model performances in Table

174

7.3, which measure how successful the models are in identifying cases where

doctors most disagree with each other and consequently where a medical second

opinion might be most useful. In Section 7.5, we perform a different evaluation

(disagreement with consensus) of the best performing DUPs and UVCs on a

special, gold standard adjudicated test set. In both evaluation settings, we find

that DUPs noticeably outperform UVCs.

The DUP and UVC models are trained and evaluated using a train/test split

on T , Ttrain,Ttest. This split is constructed using the patient ids of the xi ∈ T , with

20% of patient ids being set aside to form Ttest and 80% to form Ttrain (of which

10% is sometimes used as a validation set.) Splitting by patient ids is important

to ensure that multiple images xi, x j ∈ T corresponding to a single patient are

correctly split [102].

We apply Udisagree(·) to the xi in Ttrain,Ttest with more than one doctor label to

form a new train/test split T (disagree)
train ,T (disagree)

test . We repeat this with Uvar(·) to also

form a train/test split T (var)
train ,T

(var)
test . These two datasets capture the two different

medical interpretations of DR grades:

Categorical Grade Interpretation: The DR grades can be interpreted as categori-

cal classes, as each grade has specific features associated with it. A grade of 2

always means microaneurysms, while a grade of 5 can refer to lesions or laser

scars [1]. The T (disagree)
train ,T (disagree)

test data measures disagreement in this categorical

setting.

Continuous Grade Interpretation: While there are specific features associated

with each DR grade, patient conditions tend to progress sequentially through

the different DR grades. The T (var)
train ,T

(var)
test data thus accounts for the magnitude of

175

differences in doctor grades.

Having formed T (disagree)
train ,T (disagree)

test and T (var)
train ,T

(var)
test , which consist of pairs

(xi,Udisagree(p̂i)) and (xi,Uvar(p̂i)) respectively, we binarize the uncertainty scores

Udisagree(p̂i),Uvar(p̂i) into 0 (low uncertainty) or 1 (high uncertainty) to form our

final prediction targets. We denote these UB
disagree(p̂i),UB

var(p̂i). More details on this

can be found in Appendix Section E.4.

7.4.2 Models and First Experimental Results

We train both UVCs and DUPs on this data. All models rely on an Inception-v3

base that, following prior work [102], is initialized with pretrained weights on

ImageNet. The UVC is performed by first training a classifier hc on (xi, p̂i) pairs

in Ttrain. The output probability distribution of the classifier, p̃i = hc(xi) is then

used as input to the uncertainty scoring function U(·), i.e. huvc(xi) = U ◦ hc(xi) In

contrast, the DUPs are trained directly on the pairs (xi,UB
disagree(p̂i)), (xi,UB

var(p̂i)),

i.e. hdup(xi) directly tries to learn the value of UB(p̂i)

The results of evaluating these models (on T (disagree)
test and T (disagree)

var) are given in

Table 7.3. The Variance Prediction task corresponds to evaluation on T (disagree)
var , and

the Disagreement Prediction task to evaluation on T (disagree)
test . Both tasks correspond

to identifying patients where there is high disagreement amongst doctors. As is

typical in medical applications due to class imbalances, performance is given via

area under the ROC curve (AUC) [102, 255].

From the first two sets of rows, we see that DUP models perform better than

176

their UVC counterparts on both tasks. The third set of rows shows the effect of

using a variance DUP (Variance-PRC) on the disagreement task and a disagree

DUP (Disagree-PC) on the variance task. While these don’t perform as well as

the best DUP models on their respective tasks, they still beat both the baseline

and the strengthened baseline. Below we describe some of the different UVC

and DUP variants, with more details in Appendix Section E.4.

UVC Models The UVC models are trained on (image, empirical grade his-

togram) (xi, p̂i) pairs, and denoted Histogram- in Table 7.3. The simplest UVC

is Histogram-E2E, the same model used in [102]. We improved this baseline by

instead taking the prelogit embeddings of Histogram-E2E, and training a small

neural network (fully connected, two hidden layers width 300) with temperature

scaling (as in [103]) only on xi with multiple labels. This gave the strengthened

baseline Histogram-PC.

DUP Variance Models The simplest Variance DUP is Variance-E2E, which

is analogous to Histogram-E2E, except trained on T (var)
train . This performed better

than Histogram-E2E, but as T (var)
train is small for an Inception-v3, we trained a small

neural network (fully connected, two hidden layers width 300) on the prelogit

embeddings, called Variance-P. Small variants of Variance-P (details in Appendix

Section E.4) give Variance-PR, and Variance-PRC.

DUP Disagreement Models Informed by the variance models, the Disagree-P

model was designed exactly like the Variance-P model (a small fully connected

network on prelogit embeddings), but trained on T (disagree)
train . A small variant of

this with calibration gave Disagree-PC.

In the Appendix, we demonstrate similar results using entropy as the uncer-

177

Figure 7.3: Labels for the adjudicated dataset A. The small, gold standard adjudicated
dataset A has a very different label structure to the main dataset T . Each image has many
individual doctor grades (typically more than 10 grades). These doctors also tend to
be specialists, with higher rates of agreement. Additionally, each image has a single
adjudicated grade, where three doctors first grade the image individually, and then come
together to discuss the diagnosis and finally give a single, consensus diagnosis.

tainty function, as well as experiments studying convergence speed and finite

sample behaviour of DUP and UVC. We find that the performance gap between

DUP and UVC is robust to train data size, and manifests early in training.

7.5 Predicting Disagreement with Consensus: Adjudicated

Evaluation

Section 7.4 trained DUPs and UVCs on Ttrain, and evaluated them on their ability

to identify patient cases where individual doctors were most likely to disagree

with each other. Here, we take these trained DUPs/UVCs, and perform an

178

Model Type Majority Median Majority = 1

UVC Histogram-E2E-Var 78.1% 78.2% 81.3%
UVC Histogram-E2E-Disagree 78.5% 78.5% 80.5%
UVC Histogram-PC-Var 77.9% 78.0% 80.2%
UVC Histogram-PC-Disagree 79.0% 78.9% 80.8%
DUP Variance-PR 80.0% 79.9% 83.1%
DUP Variance-PRC 79.8% 79.7% 82.7%
DUP Disagree-P 81.0% 80.8% 84.6%
DUP Disagree-PC 80.9% 80.9% 84.5%

Model Type Median = 1 Referable

UVC Histogram-E2E-Var 78.1% 85.5%
UVC Histogram-E2E-Disagree 77.0% 84.2%
UVC Histogram-PC-Var 77.7% 85.0%
UVC Histogram-PC-Disagree 79.2% 84.8%
DUP Variance-PR 80.5% 85.9%
DUP Variance-PRC 80.2% 85.9%
DUP Disagree-P 81.9% 86.2%
DUP Disagree-PC 81.8% 86.2%

Table 7.4: Evaluating models (percentage AUC) on predicting disagreement between
an average individual doctor grade and the adjudicated grade. We evaluate our mod-
els’s performance using multiple different aggregation metrics (majority, median, bi-
narized non-referable/referable median) as well as special cases of interest (no DR
according to majority, no DR according to median). We observe that all direct uncer-
tainty models (Variance-, Disagree-) outperform all classifier-based models (Histogram-)
on all tasks.

adjudicated evaluation, to satisfy two additional goals.

Firstly, and most importantly, the clinical question of interest is not only in

identifying patients where individual doctors disagree with each other, but cases

where a more thorough diagnosis – the best possible doctor grade – would disagree

significantly with the individual doctor grade. Evaluation on a gold-standard

adjudicated dataset A enables us to test for this: each image xi ∈ A not only has

many individual doctor grades (by specialists in the disease) but also a single

adjudicated grade. This grade is determined by a group of doctors seeking to

reach a consensus on the diagnosis through discussion [167]. Figure 7.3 illustrates

179

the setup.

We can thus evaluate on this question by seeing if high model uncertainty

scores correspond to disagreements between the (average) individual doctor

grade and the adjudicated grade. More specifically, we compute different ag-

gregations of the individual doctor grades for xi ∈ A, and give a binary label for

whether this aggregation agrees with the adjudicated grade (0 for agreement, 1

for disagreement). We then see if our model uncertainty scores is predictive of

the binary label.

Secondly, our evaluation on A also provides a more accurate reflection of our

models’s performance, with less confounding noise. The labels in A (both individ-

ual and adjudicated) are much cleaner, with greater consistency amongst doctors.

As A is used solely for evaluation (all evaluated models are trained on Ttrain, Sec-

tion 7.4), this introduces a distribution shift, but the predicted uncertainty scores

transfer well. The results are shown in Table 7.4. We evaluate on several different

aggregations of individual doctor grades. Like [102], we compare agreement

between the majority vote of the individual grades and the adjudicated grades.

To compensate for a bias of individual doctors giving lower DR grades [167], we

also look at agreement between the median individual grade and adjudicated

grade. Additionally, we look at referable/non-referable DR grade agreement.

We binarize both the individual doctor grades and the adjudicated grade into

0/1 non-referable/referable, and check agreement between the median binarized

grades and adjudicated grade. Finally, we also look at the special case where the

average doctor grade is 1 (no DR), and compare agreement with the adjudicated

grade.

180

We evaluate both baseline models (Histogram-E2E, Histogram-PC) as well as

the best performing DUPs, (Variance-PR, Variance-PRC, Disagree-P, Disagree-

PC.) The additional -Var, -Disagree suffixes on the baseline models indicate which

uncertainty function (Uvar or Udisagree) was used to postprocess the classifier out-

put distribution p̃ to get an uncertainty score. We find that all DUPs outperform

all the baselines on all evaluations.

7.5.1 Ranking Evaluation

A frequent practical challenge in healthcare is to rank cases in order of hardest

(needing most attention) to easiest (needing least attention), [113]. Therefore,

we evaluate how well our models can rank cases from greatest disagreement

between the adjudicated and individual grades to least disagreement between

the adjudicated and individual grades. To do this however, we need a contin-

uous ground truth value reflecting this disagreement, instead of the binary 0/1

agree/disagree used above. One natural way to do this is to compute the Wasser-

stein distance between the empirical histogram (individual grade distribution)

and the adjudicated grade.

At a high level, the Wasserstein distance computes the minimal cost required

to move a probability distribution p(1) to a probability distribution p(2) with

respect to a given metric d(·). In our setting, p(1) is the empirical histogram p̂i of

xi, and p(2) is the point mass at the adjudicated grade ai. When one distribution

is a point mass, the Wasserstein distance has a simple interpretation:

Theorem 6. Let p(1) and p(2) be two probability distributions, with p(2) a point mass

with non-zero value a. Let d(·) be a given metric. The Wasserstein distance between p(1)

181

and p(2), ||p(1) − p(2)||w with respect to d(·) can be written as

||p(1) − p(2)||w = EC∼p(1)[d(C, a)]

The proof is in Appendix E.6. In our setting, the theorem says that the

(continuous) disagreement score for xi ∈ A is just the expected distance between

a grade drawn from the empirical histogram and the adjudicated grade. We

consider three different distance functions d(·): (a) the absolute value of the

grade difference, (b) the 2 −Wasserstein distance, a metrization of the squared

distance penalizing large grade differences more (details in Appendix E.6) and

(c) a 0/1 binary agree/disagree metric, in line with the categorical and continous

interpretations of DR grades, Section 7.4.

We compare the ranking induced by this continuous disagreement score on

A with the ranking induced by the model’s predicted uncertainty scores. To

evaluate the similarity of these rankings, we use Spearman’s rank correlation

[298], which takes a value between [−1, 1]. A −1 indicates perfect negative rank

correlation, 1 a perfect positive rank correlation and 0 no correlation. The results

are shown in Table 7.5. Similar to Table 7.4, we observe strong performance with

DUPs: all DUPs beat all the baselines on all the different distances.

This task also enables a natural comparison between the models and doctors.

In particular, we can compute a third ranking over A, by sampling n individual

doctor grades, and computing the Wasserstein distance between this subsampled

empirical histogram and the adjudicated grade. This experiment tells us how

many doctor grades are needed to give a ranking as accurate as the models. For

DUPs, we need on average 5 doctors, while for the UVC baseline, we need on

average 4 doctors.

182

7.6 Chapter Discussion

In this chapter, we show that machine learning models can successfully be

used to predict data instances that give rise to high expert disagreement. The

main motivation for this prediction problem is the medical domain, where some

patient cases result in significant differences in doctor diagnoses, and may benefit

greatly from a medical second opinion. We show, both with a formal result and

through extensive experiments, that Direct Uncertainty Prediction, which learns

an uncertainty score directly from the raw patient features, performs significantly

better than Uncertainty via Classification. Future work might look at transferring

these techniques to different data modalities, and extending the applications to

machine learning data denoising. In the next chapter, we will use these results

to inform the effective combination of human experts and machine learning

predictions.

183

Prediction Type Absolute Val 2-Wasserstein

UVC Histogram-E2E-Var 0.650 0.644
UVC Histogram-E2E-Disagree 0.645 0.633
UVC Histogram-PC-Var 0.638 0.639
UVC Histogram-PC-Disagree 0.660 0.655
DUP Variance-PR 0.671 0.664
DUP Variance-PRC 0.665 0.658
DUP Disagree-P 0.682 0.670
DUP Disagree-PC 0.680 0.669

2 Doctors 0.460 0.448
3 Doctors 0.585 0.576
4 Doctors 0.641 0.634
5 Doctors 0.676 0.670
6 Doctors 0.728 0.712

Prediction Type Binary Disagree

UVC Histogram-E2E-Var 0.643
UVC Histogram-E2E-Disagree 0.643
UVC Histogram-PC-Var 0.619
UVC Histogram-PC-Disagree 0.649
DUP Variance-PR 0.660
DUP Variance-PRC 0.656
DUP Disagree-P 0.676
DUP Disagree-PC 0.675

2 Doctors 0.455
3 Doctors 0.580
4 Doctors 0.644
5 Doctors 0.675
6 Doctors 0.718

Table 7.5: Ranking evaluation of models uncertainty scores using Spearman’s rank
correlation. In the top set of rows, we compare the ranking induced by the model
uncertainty scores to the (ground truth) ranking induced by the Wasserstein distance
between the empirical grade histogram and the adjudicated grade. We use three different
metrics for evaluating Wasserstein distance: absolute value distance, 2-Wasserstein and
Binary agree/disagree (more details in Appendix E.6.) Again, we see that all DUPs
outperform all baselines on all metrics. The second set of rows provides another way to
interpret these results. We subsample n doctors to create a new subsampled empirical
grade histogram, and compare the ranking induced by the Wasserstein distance between
this and the adjudicated grade to the ground truth ranking. We can thus say that the
average DUP ranking corresponds to having 5 doctor grades, and the average UVC
ranking corresponds to 4 doctor grades.

184

CHAPTER 8

THE ALGORITHMIC AUTOMATION PROBLEM: TRIAGE, PREDICTION

AND HUMAN EFFORT

On a variety of high-stakes tasks, machine learning algorithms are on the thresh-

old of doing what human experts do with such high fidelity that we are contem-

plating using their predictions as a substitute for human output. For example,

convolutional neural networks are close to diagnosing pneumonia from chest

X-rays better than radiologists can [255, 315]; examples like these underpin much

of the widespread discussion of algorithmic automation in these tasks.

In assessing the potential for algorithms, however, the community has implic-

itly equated the specific task of prediction with the general task of automation.

We argue here that this implicit correspondence misses key aspects of the au-

tomation problem; a broader conceptualization of automation can lead directly

to concrete benefits in some of the key application areas where this process is

unfolding.

We start from the premise that automation is more than just the replacement

of human effort on a task; it is also the meta-decision of which instances of the

task to automate. And it is here that algorithms distinguish themselves from

earlier technology used for automation, because they can actively take part in

this decision of what to automate. But as currently constructed, they are not

set up to help with this second part of the problem. The automation problem,

then, should involve an algorithm that on any given instance both (i) produces

a prediction output; and (ii) additionally also produces a triage judgment of its

effectiveness relative to the human effort it would replace on that instance.

185

Viewed in this light, machine learning algorithms as currently constructed

only solve the first problem; they do not pose or solve the second problem.

In effect, currently when we contemplate automation using these algorithms,

we are implicitly assuming that we will automate all instances or none. In

this chapter, we argue that when algorithms are built to solve both problems –

prediction and triage – overall performance is significantly higher. In fact, even

on tasks where the algorithm significantly outperforms humans on average per

instance, the optimal solution is to automate only a fraction of the instances and

to optimally divide up the available human effort on the remaining ones. And

correspondingly, even on tasks where an algorithm does not beat human experts,

the optimal solution may still be to automate a subset of instances.

Now is the right time to ask these questions because the AI community is

on the verge of translating some of its most successful algorithms into clinical

practice. Notably, an influential line of work showed how a well-constructed

convolutional net trained on gold-standard consensus labels for diagnosing

diabetic retinopathy (DR) outperforms ophthalmologists in aggregate, and these

results have led to considerable optimism about the role of algorithms in this

setting [315]. But the community’s discussion around these prospects has focused

on the algorithms’ per-instance prediction performance without considering the

problem of recognizing which instances to automate.

Using largely the same data, we build this additional, crucial component and

find that, even in this context where an algorithm outperforms human experts in

the aggregate, the optimal level of triage is not full automation. Instead signif-

icantly more accuracy can be had by triaging a fraction of the instances to the

algorithm and leaving the remaining fraction to the human experts. Specifically,

186

full automation reduces the error rate from roughly 5.5% by human doctors to

4% with an algorithm solving every instance; automation with optimal triage,

though, reduces the error further to roughly 3.5% – effectively adding a signifi-

cant further fraction to the gains that were realized by algorithmically automating

the task in the first place.

This gain occurs for two reasons: first the algorithm’s high average perfor-

mance hides significant heterogeneity in performance. For example, on roughly

40% of the instances the algorithm has zero errors. By the same token, on a small

set of instances, the algorithm makes far more errors than average and these

instances can be assigned to humans. Second, when the algorithm automates

a fraction of the cases, that frees up human effort; reallocating that effort to the

remaining cases can achieve further gains. In principle these gains could come

from a single doctor spending additional time on the instance, or from multiple

doctors looking at it; in our case, the available data allows us to explicitly quan-

tify the gains arising from the second of these effects, due to the fact that we have

multiple doctor judgments on each instance.

These results empirically demonstrate the importance of the triage component

for the automation problem. We show that the gains we demonstrate are unlikely

to have fully tapped the potential gains to be had through algorithmic triage:

this neglected component deserves the kind of sustained effort from the machine

learning community that the prediction component has received to date. In fact,

given the disparity in efforts on these two problems, it is possible that the highest

return to improving automation performance is through solving triage rather

than further improving prediction.

187

8.1 General Framework

In a typical application where we consider using algorithmic effort in place of

human effort, the goal is to label a set of instances of the problem with a positive

or a negative label. For example, in a medical diagnosis setting, we may have

a set of medical images, and the goal is to label each with a binary yes/no

diagnosis. Let x be an instance of the labeling problem, and let a(x) be its ground

truth value. For our purposes (as in the example of a binary diagnosis), we will

think of this ground truth value as taking a value of either 0 or 1, with a(x) = 0

corresponding to a negative label and a(x) = 1 corresponding to a positive label.

How do we approach this problem algorithmically? Given a set U of instances,

we could train an algorithm to produce a numerical estimate m(x) ∈ [0, 1] with

the goal of minimizing a loss function
∑

x∈U L(a(x),m(x)), where L(·, ·) increases

with the distance between its two inputs. For notational convenience, we will

write g(x) for L(a(x),m(x)), the algorithmic error on instance x. The m(x) values

are then converted into (binary) predictions, and we can evaluate the resulting

error relative to ground truth. As a concrete example, one option is to threshold

the m(x) to produce a 0 or 1 value, and evaluate agreement with a(x).

When a social planner considers the prospect of introducing algorithms into

an existing task, we often imagine the question to be the following. The planner

currently has human effort being devoted to instances of the task; for an instance

x ∈ U, we can imagine that there is a human output h(x), resulting in a loss

f (x) = L(a(x), h(x)). The question of whether to automate the task could then

be viewed as a comparison between
∑

x∈U g(x) and
∑

x∈U f (x) — the loss from

algorithmic effort relative to the loss from human effort.

188

Allocating Human Effort In order to think about the activity of automation in

a richer sense, it is useful to start from the realization that even in the absence of

algorithms, the social planner is implicitly working with a larger space of choices

than the simple picture above suggests. In particular, they have some available

budget of total human effort, and they do not need to allocate it uniformly across

instances: for an instance x, the planner can allocate k units of human effort

for different possible values of k. There are multiple possible interpretations

for the meaning of k; for example, in the case of diagnosis we could think of

k as corresponding to the number of distinct doctors who look at the instance,

or alternately to the total amount of time spent collectively by doctors on the

instance. Thus, our functions h and f should more properly be written as two-

variable functions that take an instance x and a level of effort k: we say that h(x, k)

is the label provided as a result of k units of human effort on instance x, and

f (x, k) = L(a(x), h(x, k)) is the resulting loss that we would like to minimize.

Note that as functions of effort k, it may be that f (x, k) and f (x′, k) are quite

different for different instances x and x′. For example, instance x may be much

harder than instance x′, and hence f (x, k) will be much larger than f (x′, k); sim-

ilarly, instance x might not exhibit as much marginal benefit from additional

effort as instance x′, and hence the growth of f (x, k) over increasing values of

k might be much flatter than the growth of f (x′, k). The social planner might

well not have precise quantitative estimates for values like f (x, k), but implicitly

they are seeking to allocate human effort across the set of instances U so as to

minimize the total loss incurred. And indeed, a number of basic protocols —

such as asking for second opinions — can be viewed as increasing the amount of

effort spent on instances where there might be benefits for error reduction.

189

8.1.1 Automation involving Algorithms and Humans

When algorithms are introduced, the social planner has several new consid-

erations to take into account. First, the full automation problem should be

viewed more broadly than just a binary comparison of human and algorithmic

performance; it can involve decisions about the allocation of both human and

algorithmic effort. The introduction of the algorithm need not be all-or-nothing:

we can choose to apply it to some instances in a way that replaces human effort,

thereby potentially freeing up this effort to be used on other instances. The

average overall comparison might even hide instances where the algorithm

much more significantly under- (or out-) performs the human. Second, decisions

about the allocation of human effort depend on the function f (x, k), which can be

challenging to reason about. Algorithms can potentially provide assistance in

estimating these quantities f (x, k) to help even in the allocation of human effort.

The general problem can therefore be viewed as follows. We would like to

select a subset S of instances on which no human effort will be used (only the

algorithm), and we will then optimally allocate human effort on the remaining

instances T = U − S . Suppose that we have a budget B on the total number of

units of human effort that we can allocate, and we decide to allocate kx units of

effort to each instance x ∈ T . On such an instance x, we incur a loss of f (x, kx),

using our notation above; and on the instances x ∈ S we incur a loss of g(x) from

the algorithmic prediction.

190

We thus have the following optimization problem.

Min
∑
x∈S

g(x) +
∑
x∈T

f (x, kx) (8.1)

subject to
∑
x∈T

kx ≤ B (8.2)

S ∪ T = U; S ∩ T = φ (8.3)

Our earlier discussions about algorithms and humans in isolation are special

cases of this optimization problem: full automation, when the algorithm substi-

tutes completely for human effort, is the case in which S = U; and the social

planner’s problem in the absence of an algorithm — which still involves deci-

sions about the effort variables kx — is the case in which T = U. Intermediate

solutions can be viewed as performing a kind of triage, a term we use here in a

general sense for a process in which some instances go purely to an algorithm

and others receive human attention.

By deliberately adopting a very general formulation, we can also get a clearer

picture of the kinds of information we would need in order to perform automa-

tion more effectively. Specifically,

(i) In addition to making algorithmic predictions m(x), the automation problem

benefits from more accurate estimates of the algorithm’s instance-specific

error rate g(x).

(ii) The allocation of human effort benefits from better models of human error

rate, including error as a function of effort spent f (x, k). As noted above,

we can use an algorithm to help in estimating this human error rate.

(iii) Given estimates for the functions f and g, we can obtain further perfor-

mance improvements purely through better allocations of human effort in

191

the optimization problem (8.1).

We note that the notion of human error involves an additional set of complex

design choices, which is how humans decide to make use of algorithmic assis-

tance on the instances (in the set T) where they spend effort. In particular, if we

imagine that algorithmic predictions are available on the instances in T , then the

humans involved in the decision on x ∈ T may have the ability to incorporate

the algorithmic prediction m(x) into their overall output h(x, kx), and this will

have an effect on the error rate f (x, kx). In general, of course, it will be difficult

to model a priori how this synthesis will work, although it is a very interesting

question; we show that our results for the automation problem do not require

assumptions about this aspect of the process, but we explore this question later

in the chapter.

8.1.2 Heuristics for Automation

If we think of the social planner as the entity tasked with solving the automation

problem in (8.1), they are now faced with a set of considerations: not simply the

binary question of whether to use human or algorithmic effort, but instead how

to divide the instances between those (in S) that will be fully automated and

those (in T) that will involve human effort, and how to estimate the error rates

g(x) and f (x, k) so as to solve the allocation problem effectively.

We will show that significant performance gains can be achieved over both

algorithmic and human effort even if we use only very simple heuristics for the

different components of the allocation problem. Moreover, through a stronger

192

benchmark based on ground truth, we will also show that much stronger gains

are in principle achievable with improved approaches to the components.

We can describe the simplest level of heuristics in terms of sub-problems (i),

(ii), and (iii) from earlier in this section. The simplest heuristic for (i) is to use the

functional form of the variance, m(x)(1 − m(x)) as a measure of the algorithm’s

uncertainty in its prediction on x. A comparably natural predictor does not exist

for (ii). We therefore design new algorithmic predictors to estimate the values of

both (i) and (ii), and use these to guide the allocation of algorithmic and human

effort. We show that using separate predictors in this way also strengthens

the performance gains relative to the simpler heuristic based on m(x)(1 − m(x)),

although even this basic heuristic yields improvements over full automation.

Given these predictors for (i) and (ii), what does this suggest about simple

strategies for approximating (iii), the allocation of human effort? First, we could

restrict attention to solutions in which each instance in T receives the same

amount of effort. Thus, if there are N total instances in U, we could choose a

real number α ∈ [0, 1], perform full automation on a set S of αN instances, and

divide the B units of human effort evenly across the remaining β = 1 − α fraction

of the instances. This means that each instance in the set receiving human effort

gets B/βN units of effort. For simplicity, let us write B = cN, so that the human

effort per instance in this remaining set is c/β. With this allocation of effort, the

resulting loss is
∑

x∈S g(x) +
∑

x∈T f (x, c/β).

This restriction on the set of possible solutions suggests the following heuristic.

Consider any partition of the instances into S and T , and suppose we use the

algorithm on all the instances. Then we can write the resulting loss in the

193

following convenient way:
∑

x∈S g(x) +
∑

x∈T g(x). Subtracting from the loss that

results when we assign c/β units of human effort to each instance in T , we see

that the difference is
∑

x∈T [f (x, c/β) − g(x)].

Thus, for a given value of α (specifying the fraction of instances that we

wish to assign to the algorithm), it is sufficient to rank all instances x ∈ U by

τα(x) = f (x, c/β) − g(x), and then choose the αN instances with the largest values

of τα to put in the set S that we give to the algorithm. We can thus think of τα(x)

as the triage score of instance x, since it tells us the effect of algorithmic triage

relative to human effort on the expected error.

8.1.3 Overview of Results

We put these ideas together in the context of a widely studied medical application,

concerned with the diagnosis of diabetic retinopathy, detailed in the next section.

We rank instances by their triage score, using simple forms for the algorithmic

loss g(x) and human loss f (x, c/β), and we then search over possible values of α,

evaluating the performance at each. We find that there is range of values of α,

and a way of choosing αN instances to give to the algorithm, so that the resulting

performance exceeds either of the binary choices of fully assigning the instances

to the algorithm or to human effort.

As a scoping exercise, to see how strong the possible gains from our automa-

tion approach might be, we consider what would happen if we ranked instances

by a triage score derived from a ground-truth estimate of the individual human

error on each instance. Such a benchmark indicates the power of the optimization

194

framework if we are able to get better approximations to the key quantities of

interest — the functions f and g. We find large performance gains from this

benchmark, and we also explore some stronger methods to work on closing the

gap between our simple heuristics and this ideal.

Different Costs for Error. In many settings, a social planner may associate

higher costs to errors committed by automated methods relative to errors com-

mitted by humans — for example, there may be concern about the difficulty

in identifying and correcting errors through automation, or the end users of

the results may have a preference for human output. It is natural, therefore, to

consider a version of the optimization problem in which the objective (8.1) has an

additional parameter λ specifying the relative cost of error between algorithms

and humans. This new objective function is

λ
∑
x∈S

g(x) +
∑
x∈T

f (x, kx). (8.4)

One might suppose that as λ grows large, the social planner would tend to

favor purely human effort, given the relative cost of errors from automation. And

indeed, the basic comparison that is typically made between
∑

x∈U g(x) (for full

automation) and
∑

x∈U f (x, kx) (for purely human effort) would suggest that this

should be the case, since eventually λ will exceed the ratio between these two

quantities. But our more detailed framework makes clear that these aggregate

measures of performance can obscure large levels of variability in difficulty

across instances. And what we find in our application is that it is possible for the

algorithm to identify a large set of instances S on which it makes zero errors. Thus,

even with strong preferences for human effort over algorithmic effort, it may still

be possible to find sizeable subsets of the problem that should nevertheless be

195

Figure 8.1: Example fundus photographs. Fundus photographs are images of the back
of the eye, which can be used by an opthalmologist to diagnose patients with different
kinds of eye diseases. One common such eye disease is Diabetic Retinopathy, where high
blood sugar levels cause damage to blood vessels in the eye.

automated — a fact that is hidden by comparisons based purely on aggregate

measures of performance.

8.2 Medical Preliminaries, Data and Experimental Setup

We first outline the details of the medical prediction problems, and describe the

data and experimental setup used to design the automated decision making

algorithm. As our primary goal is to study the interaction of this algorithm with

human experts, we treat many of the underlying algorithmic components (e.g. a

deep neural network model trained for predictions) as fixed, and focus on the

different modes of interactions.

The main setting for our study is the use of fundus photographs, large images

of the back of the eye, to automatically detect Diabetic Retinopathy (DR). Diabetic

Retinopathy is an eye disease caused by high blood sugar levels damaging blood

vessels in the retina. It can develop in anyone with diabetes (type 1 or type 2),

and despite being treatable if caught early enough, it remains a leading cause of

blindness [6].

196

A patient’s fundus photograph is graded on a five class scale to indicate the

presence and severity of DR. Grade 1 corresponds to no DR, 2 to mild (nonprolif-

erative) DR, 3 to moderate (nonproliferative) DR, 4 to severe (nonproliferative)

DR and 5 to proliferative DR. An important clinical threshold is at grade 3, with

grades 3 and above called referable DR, requiring immediate specialist attention,

[1]. Figure 8.1 shows some example fundus photos.

8.2.1 Data

The data used for designing the algorithm consists of these fundus photographs,

with each photograph having multiple DR grades. These grades are assigned

by individual doctors independently looking at the fundus photograph and

deciding what DR classification the image should get. There are important

distinctions between the data used for training the algorithm, and the data used

for evaluation. The training dataset is much larger in size (as a key component is

a large deep neural network) and hence each image is more sparsely labelled –

typically with one to three DR grades. The evaluation dataset is much smaller

and more extensively annotated. It is described in detail below in Section 8.2.3.

In the mechanics of training our classifier, it will be useful to view DR di-

agnosis as a 5-class classification, using the 5-point grading scheme. However,

when we consider the problem of triage and automation at a higher level, we

will treat the task as a binary classification problem into images that are referable

or non-referable.

197

Convolutional
Neural Network

for 5-class

Classification of
Diabetic

Retinopathy

Postprocess

m(xi) ≥ qR

o1

o2

o3

o4

o5

o3+ o4+ o5= m(xi)

Output

 0 or 1

Input xi

Figure 8.2: Diagram of Algorithm for Diagnosing Diabetic Retinopathy (DR). The
algorithm takes as input a fundus photograph, which, with doctor grades as targets,
is used to train a convolutional neural network to perform 5 class classification of DR.
For evaluation on an image i the output values of the convolutional neural network
on grades ≥ 3, o3, o4, o5, are summed to give m(xi), the total output mass on a referable
diagnosis. m(xi) is then thresholded with qR – the threshold for a referable diagnosis.
This binary decision is output by the algorithm.

8.2.2 A Decision Making Algorithm for Diabetic Retinopathy

Similar to prior work [102], we first use the training dataset to train a convolu-

tional neural network to classify each image. Specifically, the CNN outputs a

distribution over the 5 different DR grades for each fundus photograph, with

the empirical distribution of the individual doctor grades for that image as the

target.

The question of whether the patient has referable DR (with a grade of at least

3), and hence needs specialist attention, is one of the most important clinical

decisions. The outputs of the trained convolutional neural network form the

basis of an algorithm to make this decision. First, we compute the predicted

probability of referable DR by summing the model’s output mass on DR grades

≥ 3. For each image xi, this gives a predicted referable DR probability of m(xi).

Next, we rank the images according to the m(xi) values, and pick a threshold qR.

198

Images xi with m(xi) ≥ qR are labelled as referable DR by the algorithm, and the

others as non-referable.

The choice of the threshold qR is made so that the total number of cases

marked as referable by the algorithm matches the total number of cases marked

as referable when aggregating the human doctor grades. This ensures that the

effort, resources, and expense needed to act upon the algorithmic decisions match

the current (feasible) effort resulting from the human decision making process.

This is discussed in further detail in Section 8.2.4

The result of this process is an algorithm taking as input a patient’s fundus

photograph, and outputting a binary 0/1 decision on whether the patient has

non-referable/referable Diabetic Retinopathy. We illustrate the components of

the DR algorithm in Figure 8.2. The full details of our algorithm development

setup can be found in Appendix Section F.1.

8.2.3 Evaluation

We evaluate our decision-making algorithm on a special, gold-standard adju-

dicated dataset [167]. This dataset is much smaller than our training data, but

is meticulously labelled. For every fundus photograph in the dataset, there

are many individual doctor grades, and also a single adjudicated grade, given

after multiple doctors discuss the appropriate diagnosis for the image. This

adjudicated grade acts as a proxy for the ground truth condition, and we use it to

evaluate both the individual human doctors and the decision making algorithm.

In Appendix Section F.5 we carry out an additional evaluation of the methods on

199

a different dataset, which exhibits the same results.

8.2.4 Aggregation and Thresholding

During evaluation and the triage process, we often have multiple (binary) grades

per image. These grades might correspond to multiple different human doctors

individually diagnosing the image, or the algorithm’s binary decision along with

human doctor grades. In all of these cases, for evaluation, we must typically

aggregate these multiple grades into a concrete decision – a single summary

binary grade. To do so, we compute the mean grade and threshold by a value

R. If the mean is greater than R, this corresponds to a decision of 1 (referable);

otherwise the decision is 0 (non-referable).

The choice of the threshold R also affects the choice of qR which is used for

the algorithm’s decision. To compute qR, we first aggregate the multiple doctor

grades per image into a single grade by computing their mean and thresholding

with R. This gives us the total number of patients marked as referable by the

human doctors, and we pick qR so that the algorithm matches this number.

In the main text, we give results for R = 0.5, which corresponds to the majority

vote of the multiple grades for an image. In the Appendix, we include results for

R = 0.3, 0.4, which support the same conclusions.

200

8.3 The Triage Problem and Human Effort Reallocation

The performance of human experts and algorithmic decisions are typically sum-

marized and compared via a single number, such as average error, F1 score, or

AUC. Seeing the algorithm outperform human experts according to these metrics

might suggest the hypothesis that the algorithm uniformly outperforms human

experts on any given instance.

What we find instead, however, is significant diversity across instances in the

performance of humans and algorithms: for natural definitions of human and

algorithmic error probability (formalized below), there are instances in which

human effort has lower error probability than the algorithm, and instances in

which the algorithm has lower error probability than human effort. Moreover,

this diversity is partially predictable: we can identify with non-trivial accuracy

those instances on which one entity or the other will do better. This diversity

and its predictability is an important component of the automation framework,

since it makes it possible to divide instances between algorithms and humans so

that each party is working on those instances that are best suited to it.

We first study this performance diversity, and then move on to the problem

of allocating effort between humans and algorithms across instances.

8.3.1 Per Instance Error Diversity of Humans and Algorithms

In order to look at the differences in performance between humans and algo-

rithms on an instance-by-instance level, we want to define, for each instance xi

201

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
(D Err - M Err)

10-3

10-2

10-1

100

P
ro

p
o
rt

io
n
 o

f
Im

a
g
e
s

Lo
g
 S

ca
le

Algorithm and Doctor Error Difference
 Log Scale

D Err = M Err

D Err < M Err

D Err > M Err

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
(D Err - M Err)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

p
o
rt

io
n
 o

f
Im

a
g
e
s

Algorithm and Doctor Error Difference

D Err < M Err

D Err > M Err

Figure 8.3: Histogram plot of Pr [Hi] − Pr [Mi] for instances i in the adjudicated eval-
uation dataset. We show a histogram of probability of human doctor error minus
probability of model error over the examples in the adjudicated dataset. The orange bars
correspond to examples where the human expert has a lower probability of error than
the algorithm, the red where the probability of error is approximately equal, and the
blue where the algorithm’s probability of error is lower than the human expert’s. The
left pane is a log plot, and the right is standard scaling (pictured without the red bar.)
While the algorithm clearly has lower error probability than the human in more cases,
there is a nontrivial mass (5%) where the human experts have lower error probability
than the model.

in the adjudicated dataset, an error probability Pr [Hi] for the doctors (human

experts) and an error probability Pr [Mi] for the algorithm.

The quantity Pr [Hi] is straightforward to compute on the adjudicated dataset:

for an instance xi, suppose that ni doctors evaluate it, assigning it binary non-

referable/referable grades h(1)(xi), ..., h(ni)(xi). Let a(xi) be the binary adjudicated

grade for xi. Then we can define

Pr [Hi] =

∑ni
j=1 |h

(j)(xi) − a(xi)|

ni
.

That is, Pr [Hi] is the average disagreement of doctors with the adjudicated grade.

Computing Pr [Mi] is a little more complicated. Recall that for an instance i,

the convolutional neural network model in the algorithm outputs a value m(xi)

between [0, 1] that is then thresholded to give a binary decision. A naive estimate

202

of the error probability could therefore be m(xi) if the instance is not referable,

and 1 −m(xi) if the instance is referable. Unfortunately, deep neural networks are

well-known to be poorly calibrated [103], and this naive approximation is both

poorly calibrated and at a different scaling to the human doctors. This is not a

concern for the algorithm’s binary decision, since only the rank-ordering of the

m(xi) values matter for this, but it poses a challenge for producing a probability

that can serve as Pr [Mi].

Determining Algorithm Error Probabilities

To overcome this issue, we develop a simple method to calibrate the convolu-

tional neural network’s output. Recall that the neural network outputs a value

m(xi) ∈ [0, 1] for each image xi – i.e. it induces a ranking over the images xi, which

is used to determine the algorithmic decision. We evaluate this induced ranking

directly by asking:

Suppose we produced a (random) number R of referable instances by sampling a

random doctor for each instance, what is the probability that xi is among the top R

instances in the induced ranking?

We define p̃(xi) as the probability that the prediction algorithm declares xi

to be referable. We can then define the error probability, Pr [Mi], as p̃(xi) if the

adjudicated grade a(xi) is referable, and 1 − p̃(xi) if a(xi) is non-referable. In

Appendix Section F.2, we provide specific details of the implementation.

203

Results on Performance Diversity

We can now use the estimate of Pr [Mi] and Pr [Hi] to study the variation in human

expert and algorithmic error across different instances. Specifically, we plot a

histogram of values of Pr [Hi] − Pr [Mi] across all the adjudicated image instances.

The result is shown in Figure 8.3. We see that while there are more images

where Pr [Mi] < Pr [Hi], there is a non-trivial fraction of images with Pr [Mi] >

Pr [Hi]. In the subsequent sections, we analyze different ways of predicting these

differences as a way to perform triage, and demonstrate the resulting gains.

8.3.2 Performing Triage and Reallocating Human Effort

In formulating the basic problem of automation, we considered two baselines for

performance. The first is full automation, in which the overall loss is
∑

xi∈U g(xi).

The second is equal coverage of all instances by human effort: if we have a

budget of B = cN units of effort for N instances, then we allocate c units of

human effort to each, resulting in a loss of
∑

xi∈U f (xi, c). Our goal here is to show

that by allocating human and algorithmic effort more effectively according to

optimization problem (8.1) from Section 8.1, we can improve on both of these

baselines.

Recall the basic heuristic from Section 8.1: for an arbitrary α ∈ [0, 1], we

compute a triage score τα(xi) for each instance xi; we assign the first αN to the

set S to be handled by the algorithm, and we allocate equal amounts of human

effort to the remaining set T of (1 − α)N instances. Note that α = 1 corresponds

204

to the full automation baseline, while α = 0 corresponds to equal coverage of all

instances by human effort. We will see, however, that stronger performance can

be achieved for intermediate values of α.

We begin with two ways of computing the triage score. The first follows the

basic strategy from Section 8.1, where we train two algorithmic predictors to

estimate (i) the algorithm’s error probability, Pr [Mi] and (ii) the human error

probability Pr [Hi]. Specifically, we train two auxillary neural networks, one to

predict Pr [Hi] and one to predict Pr [Mi]. To predict Pr [Hi], we build off of the

work of [?] on direct prediction of doctor disagreement: we label each example

with a 0 if there is agreement amongst the doctor grades, and 1 otherwise,

and train a small neural network to predict these agreement labels from the

image embedding. A similar setup is employed for predicting Pr [Mi], where the

binary label now corresponds to whether the output of the diagnostic 5-class

convolutional neural network agrees with the doctor grades – i.e. does the model

make an error on that image. The full details of this process are described in

Appendix F.2.

The second method of computing a triage score establishes an “ideal” bench-

mark on the potential power of the optimization problem (8.1) using aspects of

ground truth, sorting the instances by the true value of Pr [Hi] − Pr [Mi], since

this divides the instances between humans and algorithms based on the relative

strength of each party on the respective instances.

In both cases, we determine the performance of the human effort using the

average of a corresponding number of randomly sampled doctor grades from

the data. This allows us to demonstrate improvements without any assumptions

205

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Error Model Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Ground Truth Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.03

0.04

0.05

0.06

0.07

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Error Model Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.03

0.04

0.05

0.06

0.07

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Ground Truth Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

Figure 8.4: Combing algorithmic and human effort by triaging outperforms full
automation and the equal coverage human baseline. Left column: triage by the dif-
ference between the predicted values of Pr [Hi] and Pr [Mi]. Right column: triage by
ground truth Pr [Hi] − Pr [Mi] We order the images by their triage scores (predicted
Pr [Hi] − Pr [Mi] for the left column and ground truth Pr [Hi] − Pr [Mi] on the right), and
automate an α fraction of them. The remaining (1 − α)N images have the human doctor
budget (N, 2N, 3N grades) allocated amongst them, according to the equal coverage
protocol. This is described in further detail in Appendix Section F.3. The black dotted
line is the performance of full automation, and the coloured dotted lines the performance
of equal coverage for the different total number of doctor grades available. We see that
triaging and combining algorithmic and human effort performs better than all of these
baselines. Triaging by ground truth (right column) gives significant gains, and suggests
that better triage prediction is a crucial problem that merits further study. In Appendix
Section F.4, we also include results when the remaining (1−α)N cases have the algorithm
grade available, along with the reallocated human effort. The qualitative conclusions are
identical.

206

on how the doctors might use information from the algorithmic predictions on

these instances. It is also reasonable, however, to imagine a scenario in which

the algorithmic predictions are still freely available even on the instances that we

assign to the human doctors, and to consider simple models for how the doctor

grades might be combined with these algorithmic predictions. We consider this

case in the Appendix, which supports the same conclusions.

Triage Results

The results for these two triage scores, as we vary α, are shown in Figure 8.4.

The figure depicts both the average error (bottom row), as well as the F1 score

(top row), which accounts for imbalances between the number of referable and

non-referable instances. The left column corresponds to using the difference

between the predicted values of Pr [Hi] and Pr [Mi] as a triage score, while the

right column corresponds to using the true value Pr [Hi] − Pr [Mi] to perform

triage. In both triage schemes, we observe that the best performance comes for

0 < α < 1, beating both the full automation protocol (dotted black line) and equal

coverage of all instances by human effort (coloured dotted lines).

While combining algorithmic and human effort in both of these ways leads

to performance gains, we see that the ground truth triage ordering performs

significantly better than triaging by the predicted error probability. This suggests

that learning better triage predictors might have an even greater impact on over-

all deployed performance than continuous slight improvements to diagnostic

accuracy.

207

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Varying Triage Scores
 Effort Reallocation Average Error

Alg Uncertainty Triage

Predicted Errors Triage

Full Automation

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
v
e
ra

g
e
 F

1
 S

co
re

Varying Triage Scores
 Effort Reallocation Average F1 Score

Alg Uncertainty Triage

Predicted Errors Triage

Full Automation

Figure 8.5: Even triaging by algorithm uncertainty leads to gains over pure algorith-
mic and pure human performance. Instead of the separate error prediction algorithms,
we triage by the simple algorithm uncertainty: m(x)(1 − m(x)), which acts as a proxy
for algorithm error probability (and no explicit modelling of human error probability.)
The same qualitative conclusions hold with this simple triage score also (purple line),
although larger gains are achieved with the separate error prediction algorithms (blue
line). These results are for N doctor grades, the same conclusions hold for 2N, 3N grades.

The Simplest Heuristic: Algorithmic Uncertainty

In the previous section, we saw the results of training two separate algorithmic

predictors to estimate the values of Pr [Hi] and Pr [Mi], and using the difference

between these predicted values as a triage score. An even simpler triage score

is given by only using the algorithm’s uncertainty, m(x)(1 − m(x)). In Figure 8.5,

we show that even this triage score, available ‘for free’ from the algorithmic

predictor, improves upon pure automation and pure human effort, although

larger gains are available through using the two algorithmic error predictors.

These results reiterate the rich possibilities for gains from algorithmic triage.

208

8.3.3 Differential Costs and Zero-Error Subsets

Finally, we recall a further consideration from the framework in Section 8.1:

suppose the social planner views errors made by algorithms as more costly than

errors made by humans, resulting in an objective function of the form in (8.4),

λ
∑

x∈S g(x) +
∑

x∈T f (x, kx). As λ becomes large, what does this imply about the

use of algorithmic predictions?

We find in our application that it is possible to identify large subsets of

the data on which the algorithm achieves zero error. Such a fact can easily be

hidden by considering only aggregate measures of algorithmic performance,

and it implies that even when λ is large, there may still be an important role for

algorithms in automation.

To quantify this effect, we order the instances by a triage score as in our earlier

analyses. We then look at the average error of the algorithmic predictions on the

first α fraction of images: for α varying between 0 and 1, we plot

Merr(αN)
N

where Merr(αN) is the number of errors made by the model on the first αN

instances.

Results

Figure 8.6 left pane shows the results of plotting this quantity. We triage the cases

both by our prediction of Pr [Hi]−Pr [Mi] from the two error prediction algorithms

as well as the simple algorithm uncertainty term, m(x)(1 − m(x)). We evaluate the

209

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cases Triaged

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
u
m

u
la

ti
v
e
 E

rr
o
r

Cumulative Error with
 Algorithm Uncertainty Triage

Cumulative Triaged Model Error

Total Average Model Error

Total Average Doctor Error

35% Triaged with Zero Error

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cases Triaged

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
u
m

u
la

ti
v
e
 E

rr
o
r

Cumulative Error with
 Predicted Error Triage

Cumulative Triaged Model Error

Total Average Model Error

Total Average Doctor Error

44% Triaged with Zero Error

Figure 8.6: Triage identifies large subsets of the data with zero error. We plot the
average cumulative error Merr(αN)

N , where Merr(αN) is the number of errors made by
the algorithm on the first α fraction of the N images when triaged. We observe that
triaging even by the simple uncertainty measure, m(xi)(1 − m(xi)) (left plot), can identify
a 35% fraction of data where the algorithm makes zero errors. Using the separate error
prediction model from Section 8.3.2, we can improve on this, identifying 44% of the data
where the algorithm has zero errors. The plot is averaged over three repetitions (so each
repeat identified at least 35%, 44% of the data respectively.)

average error of the algorithmic predictions on the first α fraction of images, over

three repetitions of training the diagnostic neural network component of the

algorithm. We see that even using the simple m9x)(1 − m(x)) as a triage score, we

can identify a zero-error subset that is 35% the size of the entire dataset. Similar

to Section 8.3.2, further improvements are shown by predicting the value of

Pr [Hi] − Pr [Mi]. The right pane of Figure 8.6 shows this result, where we can

identify a zero-error subset of size 44%, again averaged over three repetitions.

8.4 Related Work

With the successes of machine learning and particularly deep learning method-

ologies in modalities such as imaging, there have been numerous works compar-

ing algorithmic performance to human performance in medical tasks, albeit in

210

frameworks that implicitly interpret automation as success in prediction. In this

prediction setting, the general comparison is between the case in which only the

algorithm is used and the case in which only human effort is used; such compar-

isons have been done for chest x-rays [255], for Alzheimer’s detection from PET

scans [62], and for the setting we consider here based on diabetic retinopathy

diagnosis from fundus photographs (and OCT scans) [57, 102]. The recent survey

paper by Topol [315] references several additional studies of this kind. A few

papers have begun to look at fixed modes of interaction with humans, including

processes in which algorithmic outputs are reviewed by physicians [33, 59, 193],

as well as fixed combinations of physician and algorithmic judgments, as seen in

Chapter 7.

8.5 Discussion

This chapter has presented a framework for analyzing automation by algorithms.

Rather than treating the introduction of algorithms in an all-or-nothing fashion,

we show that stronger performance can be obtained if algorithms are used

both (i) for prediction on instances of the problem, and (ii) for providing triage

judgments about which instances should be handled algorithmically and which

should be handled by human effort. This broader formulation of the automation

question highlights the importance of accurately estimating the propensity of

both humans and algorithms to make errors on a per-instance basis, and the use

of these estimates in an optimization framework for allocating effort efficiently.

Analysis of an application in diabetic retinopathy diagnosis shows that this

framework can lead to performance gains even for well-studied problems in AI

211

applications in medicine.

Through the analysis of benchmarks for stronger performance, we also high-

light how stronger predictions of per-instance error has the potential to yield

still better performance. Our findings thus demonstrate how further study of

algorithmic triage and its role in allocating human and computational effort has

the potential to yield substantial benefits for the task of automation.

212

Part V

Conclusion and Future Directions

213

CHAPTER 9

CONCLUSION AND FUTURE DIRECTIONS

With the dramatic increase in the size and complexity of data across many

specialized domains, and the continuing breakthroughs in central machine learn-

ing problems, there are many exciting opportunities for applications of machine

learning in high-stakes domains such as medicine. However, these opportunities

also present new challenges, such as gaining insights into the system beyond per-

formance metrics, designing efficient learning algorithms and enabling effective

collaboration between AI systems and human experts (with better evaluation of

these capabilities).

In this thesis we have presented some of the research results taking steps

to address these challenges. We started by developing quantitative techniques

for giving insights into the hidden representations of neural network models,

which shed light on many fundamental design components such as the training

process and generalization. These insights went on to inform simpler and more

flexible methods for efficient learning, across both few-shot learning and transfer

learning. Finally, we looked at approaches to combine trained AI systems with

human experts, formulating and tackling new prediction problems along the

way and demonstrating that effective combinations could outperform either

entity alone.

While these are important steps in surmounting the aforementioned chal-

lenges, there remain many rich open directions for future exploration. Consid-

ering the results presented in Part II, there is significant scope to build more

techniques to give different kinds of insights into deep learning systems. As a

214

concrete example, we might consider using Partial Least Squares [347] or Gener-

alized Canonical Correlation [313] as a foundation for representation analysis.

There are also interesting open questions in combining representational analysis

methods with interpretability techniques [231] to gain further understanding of

the distributed nature of representations.

Similarly, building the results of both Part II and Part III we might consider

understanding and unifying the diverse set of new self-supervision and semi-

supervised learning methods developed by the community, and overviewed in

Chapter 2. Such techniques could also dramatically help reduce the dependence

on the need for costly labels in specialized applications. In Part III, we focused

on transfer learning and few-shot learning as two approaches to reduce label

dependence. An interesting regime to further explore is medium-shot learning,

where there are more data instances than in few-shot learning, but perhaps

not enough for full-fledged finetuning like in transfer learning. Understanding

which algorithms might be most effective in this setting is an underexplored

direction.

Finally, there are many rich directions to explore in enabling better collab-

oration between human experts and AI systems. Part IV presented a simple

predictive problem and a resulting (effective) way to do a single-step combina-

tion of AI systems and human experts. There are many followup questions from

even this first set of results. How faithfully can AI systems model human experts

(and their potential errors)? Can we use techniques like few-shot learning to

model individual human behaviours with less data? What are the evaluation

metrics for AI systems that might best indicate their ability to work well with

human experts on predictive tasks? Are there multistep interactions or techniques

215

for feedback incorporation (by either entity) that can be modelled and deployed?

We hope that the work presented in this thesis provides a foundation of both

results and questions that will help further progress on these central challenges

and enable the full potential of the design and deployment of machine learning

systems.

216

APPENDIX A

CHAPTER 3 APPENDIX

A.1 Mathematical details of CCA and SVCCA

Canonical Correlation of X,Y Finding maximal correlations between X,Y can

be expressed as finding a, b to maximise:

aT ΣXYb√
aT ΣXXa

√
bT ΣYYb

where ΣXX,ΣXY ,ΣYX,ΣYY are the covariance and cross-covariance terms. By per-

forming the change of basis x̃̃x̃x1 = Σ
1/2
xx a and ỹ̃ỹy1 = Σ

1/2
YY b and using Cauchy-Schwarz

we recover an eigenvalue problem:

x̃̃x̃x1 = argmax

 xT Σ
−1/2
XX ΣXYΣ−1

YYΣYXΣ
−1/2
XX x

||x||

 (*)

SVCCA Given two subspaces X = {xxx1, ..., xxxm1},Y = {yyy1, ...,yyym2}, SVCCA first

performs a singular value decomposition on X,Y . This results in singular vectors

{x′x′x′1, ..., x′x′x′m1}with associated singular values {λ1, ..., λm1} (for X, and similarly for

Y). Of these m1 singular vectors, we keep the top m′1 where m′1 is the smallest

value that
∑m′1

i=1 |λi|(≥ 0.99
∑m1

i=1 |λi|). That is, 99% of the variation of X is explainable

by the top m′1 vectors. This helps remove directions/neurons that are constant

zero, or noise with small magnitude.

Then, we apply Canonical Correlation Analysis (CCA) to the sets

{x′x′x′1, ..., x′x′x′m′1}, {y
′y′y′1, ...,y

′y′y′m′2} of top singular vectors.

217

CCA is a well established statistical method for understanding the similar-

ity of two different sets of random variables – given our two sets of vectors

{x′x′x′1, ..., x′x′x′m′1}, {y
′y′y′1, ...,y

′y′y′m′2}, we wish to find linear transformations, WX,WY that max-

imally correlate the subspaces. This can be reduced to an eigenvalue problem.

Solving this results in linearly transformed subspaces X̃, Ỹ with directions x̃xxi, ỹyyi

that are maximally correlated with each other, and orthogonal to x̃xx j, ỹyy j, j < i. We

let ρi = corr(x̃xxi, ỹyyi). In summary, we have:

SVCCA Summary

1. Input: X,Y

2. Perform: SVD(X), SVD(Y). Output: X′ = UX,Y ′ = VY

3. Perform CCA(X′, Y ′). Output: X̃ = WXX′, Ỹ = WYY ′ and corrs =

{ρ1, . . . ρmin(m1,m2)}

A.2 Additional Proofs and Figures from Section 3.2.1

Proof of Orthonormal and Scaling Invariance of CCA:

We can see this using equation (*) as follows: suppose U,V are orthonormal

transforms applied to the sets X,Y . Then it follows that Σa
XX becomes UΣa

XXUT , for

a = {1,−1, 1/2,−1/2}, and similarly for Y and V . Also note ΣXY becomes UΣXYVT .

Equation (*) then becomes

x̃1 = argmax

 xT UΣ
−1/2
XX ΣXYΣ−1

YYΣYXΣ
−1/2
XX UT x

||x||

218

So if ũ is a solution to equation (*), then Uũ is a solution to the equation above,

which results in the same correlation coefficients.

5

0

5

10

15

20

80

60

40

20

0

20

40

0 2000 4000 6000 8000 10000
40

20

0

20

40

60

80

CIFAR10 Signal and Distorted Version

5

0

5

10

15

20

0 2000 4000 6000 8000 10000
5

0

5

10

15

20

Output after Canonical Correlation

Figure App.1: This figure shows the ability of CCA to deal with orthogonal and scaling
transforms. In the first pane, the maroon plot shows one of the highest activation
neurons in the penultimate layer of a network trained on CIFAR-10, with the x-axis being
(ordered) image ids and the y-axis being activation on that image. The green plots show
two resulting distorted directions after this and two of the other top activation neurons
are permuted, rotated and scaled. Pane two shows the result of applying CCA to the
distorted directions and the original signal, which succeeds in recovering the original
signal.

The importance of SVD: how many directions matter?

While CCA is excellent at identifying useful learned directions that correlate,

independent of certain common transforms, it doesn’t capture the full picture

entirely. Consider the following setting: suppose we have subspaces A, B,C,

with A being 50 dimensions, B being 200 dimensions, 50 of which are perfectly

aligned with A and the other 150 being noise, and C being 200 dimensions, 50 of

which are aligned with A (and B) and the other 150 being useful, but different

directions.

219

Then looking at the canonical correlation coefficients of (A, B) and (A,C) will

give the same result, both being 1 for 50 values and 0 for everything else. But

these are two very different cases – the subspace B is indeed well represented by

the 50 directions that are aligned with A. But the subspace C has 150 more useful

directions.

This distinction becomes particularly important when aggregating canonical

correlation coefficients as a measure of similarity, as used in analysing network

learning dynamics. However, by first applying SVD to determine the number of

directions needed to explain 99% of the observed variance, we can distinguish

between pathological cases like the one above.

A.3 Proof of Theorem 1

(a) (b) (c) (d)

Figure App.2: This figure visualizes the covariance matrix of one of the channels
of a resnet trained on Imagenet. Black correspond to large values and white
to small values. (a) we compute the covariance without a translation invariant
dataset and without first preprocessing the images by DFT. We see that the co-
variance matrix is dense. (b) We compute the covariance after applying DFT, but
without augmenting the dataset with translations. Even without enforcing trans-
lation invariance, we see that the covariance in the DFT basis is approximately
diagonal. (c) Same as (a), but the dataset is augmented to be fully translation
invariant. The covariance in the pixel basis is still dense. (d) Same as (c), but with
dataset augmented to be translation invariant. The covariance matrix is exactly
diagonal for a translation invariant dataset in a DFT basis.

220

Here we provide the proofs for theorem 3, theorem 4, Theorem 2 and finally

Theorem 1.

A preliminary note before we begin:

When we consider a (wlog) n by n channel c of a convolutional layer, we

assume it has shape

zzz0,0 zzz1,2 . . . zzz0,n−1

zzz1,0 zzz2,2 . . . zzz1,n−1

...
...

. . .
...

zzzn−1,0 zzzn−1,1 . . . zzzn−1,n−1

When computing the covariance matrix however, we vectorize c by stacking

the columns under each other, and call the result vec(c):

vec(c) =

zzz0,0

zzz1,0

...

zzzn−1,0

zzz0,1

...

zzzn−1,n−1

:=

zzz0

zzz1

...

zzzn−1

zzzn

...

zzzn2−1

One useful identity when switching between these two notations is

vec(AcB) = (BT ⊗ A)vec(c)

where A, B are matrices and ⊗ is the Kronecker product. A useful observation

arising from this is:

221

Theorem 7. The CCA vectors of DFT (ci),DFT (c j) are the same (up to a rotation by F)

as the CCA of ci, c j.

Proof: From Section A.2 we know that unitary transforms only rotate the CCA

directions. But while DFT pre and postmultiplies by F, FT – unitary matrices, we

cannot directly apply this as the result is for unitary transforms on vec(ci). But,

using the identity above, we see that vec(DFT (ci)) = vec(FciFT) = (F ⊗ F)vec(ci),

which is unitary as F is unitary. Applying the same identity to c j, we can thus

conclude that the DFT preserves CCA (up to rotations).

As Theorem 1 preprocesses the neurons with DFT, it is important to note that

by the theorem above, we do not change the CCA vectors (except by a rotation).

A.3.1 Proof of theorem 3

Proof. Translation invariance is preserved We show inductively that any translation

invariant input to a convolutional channel results in a translation invariant

output: Suppose the input to channel c, (n by n) is translation invariant. It

is sufficient to show that for inputs Xi, X j and 0 ≤ a, b,≤ n − 1, c(Xi) + (a, b)

mod n = c(X j). But an (a, b) shift in neuron coordinates in c corresponds to

a (height stride · a,width stride · b) shift in the input. And as X is translation

invariant, there is some X j = Xi + (height stride · a,width stride · b).

cov(c) is circulant:

Let X be (by proof above) a translation invariant input to a channel c in some

222

convolution or pooling layer. The empirical covariance, cov(c) is the n2 by n2

matrix computed by (assuming c is centered)

1
|X|

∑
Xi∈X

vec(c(Xi)) · vec(c(Xi))T

So, cov(c)i j = 1
|X|zzz

T
i zzz j = 1

|X|

∑
Xl∈X zzzT

i (Xl)zzz j(Xl), i.e. the inner products of the neu-

rons i and j.

The indexes i and j refer to the neurons in their vectorized order in vec(c).

But in the matrix ordering of neurons in c, i and j correspond to some (a1, b1)

and (a2, b2). If we applied a translation (a, b), to both, we would get new neuron

coordinates (a1 + a, b1 + b), (a2 + a, b2 + b) (all coordinates mod n) which would

correspond to i+an+b mod n2 and j+an+b mod n2, by our stacking of columns

and reindexing.

Let τa,b be the translation in inputs corresponding to an (a, b) translation

in c, i.e. τa,b = (height stride · a,width stride · b). Then clearly zzz(a1,b1)(Xi) =

zzz(a1+a,b1+b)(τ(a,b)(Xi), and similarly for zzz(a2,b2)

It follows that 1
|X|zzz

T
(a1,b1)zzz(a2,b2) = 1

|X|zzz
T
(a1+b,b1+b)zzz(a2+a,b2+b), or, with vec(c) indexing

1
|X|

zzzT
i zzz j =

1
|X|

zzzT
(i+an+b mod n2)zzz(j+an+b mod n2)

This gives us the circulant structure of cov(c).

cov(c) is block circulant: Let zzz(i) be the ith column of c, and zzz(j) the jth. In vec(c),

these correspond to zzz(i−1)n, . . . zzzin−1 and zzz(j−1)n, . . . zzz jn−1, and the n by n submatrix at

those row and column indexes of cov(vec(c)) corresponds to the covariance of col-

umn i, j. But then we see that the covariance of columns i + k, j + k, corresponding

223

to the covariance of neurons zzz(i−1)n+k·n, . . . zzzin−1+k·n, and zzz(j−1)n+k·n, . . . zzz jn−1+k·n, which

corresponds to the 2-d shift (1, 0), applied to every neuron. So by an identical

argument to above, we see that for all 0 ≤ k ≤ n − 1

cov(zzz(i), zzz(j)) = cov(zzz(i+k), zzz(j+k))

In particular, cov(vec(c)) is block circulant. �

An example cov(vec(c)) with c being 3 by 3 look like below:

A0 A1 A2

A2 A0 A1

A1 A2 A0

where each Ai is itself a circulant matrix.

A.3.2 Proof of theorem 4

Proof. This is a standard result, following from expressing a circulant matrix A

in terms of its diagonal form , i.e. A = VΣVT with the columns of V being its

eigenvectors. Noting that V = F, the DFT matrix, and that vectors of powers of

ωk = exp(2πik
n), ω j = exp(2πik

n) are orthogonal gives the result. �

224

A.3.3 Proof of Theorem 2

Proof. Starting with (a), we need to show that cov(vec(DFT (ci)), vec(DFT (ci)) is

diagonal. But by the identity above, this becomes:

cov(vec(DFT (ci)), vec(DFT (ci)) = (F ⊗ F)vec(ci)vec(ci)T (F ⊗ F)∗

By theorem 3, we see that

cov(vec(ci)) = vec(ci)vec(ci)T =

A0 A1 . . . An−1

An−1 A0 . . . An−2

...
...

. . .
...

A1 A2 . . . A0

with each Ai circulant.

And so cov(vec(DFT (ci)), vec(DFT (ci)) becomes

f00F f01F . . . f0,n−1F

f10F f11F . . . f1,n−1F
...

...
. . .

...

fn−1,0F fn−1,1F . . . fn−1,n−1F

A0 A1 . . . An−1

An−1 A0 . . . An−2

...
...

. . .
...

A1 A2 . . . A0

f ∗00F∗ f ∗10F∗ . . . f ∗n−1,0F∗

f ∗01F∗ f ∗11F∗ . . . f ∗n−1,1F∗

...
...

. . .
...

f ∗0,n−1F∗ f ∗1,n−1F∗ . . . f ∗n−1,n−1F∗

From this, we see that the s jth entry has the form

n−1∑
l=0

 n−1∑
k=0

fskFAl−k

 f ∗l jF
∗ =

∑
k,l

fsk f ∗l jFAl−kF∗

Letting [FArF∗] denote the coefficient of the term FArF∗, we see that (addition

being mod n)

[FArF∗] =

n−1∑
k=0

fsk f ∗(k+r) j =
∑

k

e
2πisk

n · e
−2πi j(k+r)

n = e
−2πi jr

n

n−1∑
k=0

e
2πik(s− j)

n = e
−2πi jr

n · δs j

225

with the last step following by the fact that the sum of powers of non trivial roots

of unity are 0.

In particular, we see that only the diagonal entries (of the n by n matrix of

matrices) are non zero. The diagonal elements are linear combinations of terms

of form FArF∗, and by theorem 4 these are diagonal. So the covariance of the

DFT is diagonal as desired.

Part (b) follows almost identically to part (a), but by first noting that exactly

by the proof of theorem 3, cov(ci, c j) is also a circulant and block circulant matrix.

�

A.3.4 Proof of Theorem 1

Proof. This Theorem now follows easily from the previous. Suppose we have a

layer l, with channels c1, ..., ck. And let vec(DFT (ci)) have directions z̃zz(i)
0 , · · · z̃zz

(i)
n2−1.

By the previous theorem, we know that the covariance of all of these neurons

only has non-zero terms cov(z̃zz(i)
k , z̃zz

(j)
k .

So arranging the full covariance matrix to have row and column indexes

being z̃zz(1)
0 , z̃zz(1)

0 , . . . z̃zz(k)
0 , z̃zz

(1)
1 . . . z̃zz(k)

n2 the nonzero terms all live in the n2 k by k blocks

down the diagonal of the matrix, proving the theorem. �

226

A.3.5 Computational Gains

As the covariance matrix is block diagonal, our more efficient algorithm for

computation is as follows: take the DFT of every channel (n log n due to FFT) and

then compute covariances according to blocks: partition the kn directions into

the n2 k by k matrices that are non-zero, and compute the covariance, inverses

and square roots along these.

A rough computational budget for the covariance is therefore kn log n + n2k2.5,

while the naive computation would be of order (kn2)2.5, a polynomial difference.

Furthermore, the DFT method also makes for easy parallelization as each of the

n2 blocks does not interact with any of the others.

A.4 Per Layer Learning Dynamics Plots from Section 3.4.1

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
V

C
C

A
 o

f
la

y
e
r

w
it

h
 f

in
a
l
st

e
p

Layer dynamics with SVCCA

in

c1

c2

bn1

p1

c3

c4

c5

bn2

p2

fc1

bn3

fc2

bn4

logits

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
V

C
C

A
 o

f
la

y
e
r

w
it

h
 f

in
a
l
st

e
p

Layer dynamics with SVCCA

in

res

bn_cv

bn_cv

res

bn_cv

bn_cv

res

bn_cv

bn_cv

out

Figure App.3: Learning dynamics per layer plots for conv (left pane) and res (right
pane) nets trained on CIFAR-10. Each line plots the SVCCA similarity of each layer with
its final representation, as a function of training step, for both the conv (left pane) and
res (right pane) nets. Note the bottom up convergence of different layers

227

A.5 Additional Figure from Section 3.4.4

Figure App.4 compares the converged representations of two different initializa-

tions of the same convolutional network on CIFAR-10.

in c1 c2

b
n
1

p
1 c3 c4 c5

b
n
2

p
2

fc
1

b
n
3

fc
2

b
n
4

lo
g
it
s

ou
t

Initialization 2

out

logits

bn4

fc2

bn3

fc1

p2

bn2

c5

c4

c3

p1

bn1

c2

c1

in

In
it

ia
liz

a
ti

o
n
 1

SVCCA similarity of CIFAR10 conv nets over
different random initializations

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure App.4: Comparing the converged representations of two different ini-
tializations of the same convolutional architecture. The results support findings
in [183], where initial and final layers are found to be similar, with middle layers
differing in representation similarity.

A.6 Experiment from Section 3.4.4

228

p2 fc1 bn3 fc2 bn4

Number of top layers consecutively compressed

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

A
cc

u
ra

cy

CIFAR10: Accuracy after compression by projecting
 layers onto top SVCCA directions

baseline

45% (SVCCA two nets)

63% (SVCCA two nets)

22% (SVCCA against logits)

35% (SVCCA against logits)

Figure App.5: Using SVCCA to perform model compression on the fully connected
layers in a CIFAR-10 convnet. The two gray lines indicate the original train (top) and test
(bottom) accuracy. The two sets of representations for SVCCA are obtained through 1)
two different initialization and training of convnets on CIFAR-10 2) the layer activations
and the activations of the logits. The latter provides better results, with the final five
layers: pool1, fc1, bn3, fc2 and bn4 all being compressed to 0.35 of their original size.

229

APPENDIX B

APPENDIX TO PWCCA AND GENERALIZATION

B.0.1 Performance Plots for Models

We include the train/test curves for models trained in Figure 4.1. Comparing

the curves to Figure 4.1, we can see that for all the models, there is a train time

t0 where performance is almost equivalent to final performance, but most CCA

coefficients ρ(i) still haven’t converged. This suggests that the vectors associated

with these ρ(i) are noise in the representation, which is not necessary for doing

well at the task.

0 10000 20000 30000 40000 50000 60000 70000 80000
Step

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 Resnet Performance

train acc
test acc

0 100 200 300 400 500
Epoch Number

50

100

150

200

250

300

Pe
rp

le
xi

ty

PTB Test Perplexity

0 100 200 300 400 500 600 700
Epoch Number

100

200

300

400

500

600

Pe
rp

le
xi

ty

WikiText-2 Test Perplexity

Figure App.1: Performance convergence for CIFAR-10 CNNs, and PTB and
WikiText-2 RNNs.

B.0.2 Additional reduction methods for CCA

Bartlett’s Test Another potential method to reduce across CCA vectors of vary-

ing importnace is to estimate the number of important CCA vectors k, and

perform an average over this. A statistical hypothesis test, proposed by Bartlett

[22], and known as Bartlett’s test, attempts to identify the number of statistically

significant canonical correlations. Key to the test is the computation of Bartlett’s

230

statistic:

Tk = −

n − k −
1
2

(a + b + 1) +

k∑
i=1

1
(ρ(i))2

 log

 c∏
i=k+1

(1 − (ρ(i))2

where, in the same notation as previously, n is the number of datapoints, and a, b

are the number of neurons in L1, L2, with c = min(a, b). The null hypothesis H0 is

that there are k statistically significant canonical correlations with the remaining

ρ(i) are generated randomly via a normal distribution [22]. Under the null, the

distribution of Tk becomes chi-squared with (a− k)(b− k) degrees of freedom. We

can then compute the value of Tk and determine if H0 satisfactorily explains the

data.

However, the iterative nature of this metric makes it expensive to compute.

We therefore focus on projection weighting in this work, and leave further

exploration of Bartlett’s test for a future study.

B.0.3 Representation Dynamics in RNNs Through Sequence

(Time) Steps

Here, we investigate the utility of CCA for analyzing representations of RNNs

unrolled across sequence time steps. As a toy example of CCA’s benefit in this

case, we first initialize a linear vanilla RNN with a unitary recurrent matrix (such

that it simply rotates the hidden representation on each timestep). We then use

cosine distance, Euclidean distance, and CCA to compare the hidden representa-

tion at each timestep to the representation at the final timestep (Figure App.2a-c).

While both cosine and Euclidean distance fail to realize the similarity between

timesteps, CCA, because of its invariance to linear transforms, immediately

231

Figure App.2: Toy RNN examples demonstrating that CCA is comparatively rota-
tion invariant. In a toy example, vanilla RNNs were initialized with a random rotation
matrix and run 1000 times with a random starting hidden state and no inputs. Hidden
states at each timepoint were compared to the final hidden state using cosine distance
(a, d), Euclidean distance (b, e), and CCA (c, f). Due to its rotation invariance, CCA
recognized all states as similar in both linear RNNs (a-c), and a blended linear/non-
linear case (d-f; ht+1 = Wrotht + α · σ(Wrandht) + b, where Wrot is a random rotation matrix,
Wrand ∼ N(0, I)), while both cosine and Euclidean distance largely fail. Error bars repre-
sent mean ± std.

recognizes that the representations at all timesteps are linearly equivalent.

However, as linear networks are limited in their representational capabilities,

we next examine a toy case of a network involving both a linear and non-linear

component. We again initialize a simple RNN with the following update rule:

ht+1 = Wrotht + α · σ(Wrandht) + b

where ht is the hidden state at time t, σ represents the sigmoid nonlinearity,

Wrot is a random rotation matrix, Wrand ∼ N(0, I)), and α is a scale factor between

the linear and non-linear components. For values of α as high as 100 (suggesting

that the nonlinear component has 100 times the magnitude of the linear compo-

nent), we again find that, in contrast to CCA, cosine and Euclidean distance fail

232

to recognize the similarity between timesteps (Figure App.2d-f).

However, both of the above cases are toy examples. We next analyze the

application of CCA to the more realistic situation of LSTM networks trained on

PTB and WikiText-2. To do this, we unroll the RNN for 20 sequence steps, and

collect the activations of each neuron in the hidden state over the appropriate

sequence tokens for each of the 20 timesteps. More precisely, we can represent

our output by a matrix O with dimensions (N,m) where N is the number of

neurons and m is the total sequence length. Our per sequence step matrices

would then be O0, ...,O19, with O j consisting of all the outputs corresponding

to sequence tokens with index equal to j modulo 20, and our matrix would

have dimensions (N,m/20). We can then compare O j to O19 analogous with the

comparison to the final timestep. We then apply CCA, Cosine and Euclidean

distance as above. To our surprise, the hidden state varies significantly from

sequence timestep to sequence timestep, Figure App.4.

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

CCA Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Cosine Distance

Layer
0
1
2

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.5

1.0

Euclidean Distance

Figure App.3: Hidden states are nonlinearly variable over sequence timesteps. Us-
ing CCA (left), cosine distance (middle), and Euclidean distance (right), we measured the
distance between representations at sequence timestep t and the final sequence timestep
T . Interestingly, even CCA failed to find similarity until late in the sequence, suggesting
that the hidden state varies nonlinearly in the presence of unique inputs.

The above result demonstrates that the hidden state varies nonlinearly in the

presence of unique inputs. However, this nonlinearity could be caused by the

recurrent dynamics or novel inputs. To disambiguate these two cases, we asked

how the hidden state changes when the same input is repeated. We therefore

233

repeat the same input for 20 timesteps, beginning the repetition after some

percentage of previous steps containing unique inputs (e.g., 1%, 10%, ... through

the m input sequence tokens). When the repeating inputs were presented early

in the sequence, CCA recognized that the hidden state was highly similar, while

cosine and Euclidean distance remained insensitive to this similarity (Figure

App.4, light blue lines). This result appears to suggest that the recurrent dynamics

are approximately linear in nature.

However, when the same set of repeating inputs was presented late in the

sequence (Figure App.4, dark blue lines), we found that the CCA distance in-

creased markedly, suggesting that the nonlinearity of the recurrent dynamics

depends not only on the (fixed) recurrent matrix, but also on the sequence history

of the network.

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

CCA Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

1.0
Cosine Distance

0 2 4 6 8 10 12 14 16 18
Sequence Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Euclidean Distance

Repeat Start 1%
Repeat Start 8%
Repeat Start 24%
Repeat Start 48%
Repeat Start 81%
No Repeat

Figure App.4: Hidden states vary linearly in the presence of repeated inputs. To test
whether the nonlinearity in the hidden state over sequence timesteps was due to input
variability or recurrent dynamics, we measured the CCA distance (left), cosine distance
(middle), and Euclidean distance (right) between sequence timestep t and the final
sequence timestep T in the presence of repeating inputs. Interestingly, we found that
when the repetition started after only a small set of unique inputs have been presented
(light blue lines), CCA was able to recognize that the hidden states at each sequence
timestep were highly similar. However, after many unique inputs had been delivered,
the CCA distance markedly increased, suggesting that the nonlinearity of the recurrent
dynamics is dependent on the network’s history.

234

B.0.4 Experimental details

CIFAR-10 ConvNet Architecture: The convolutional networks trained on

CIFAR-10 were identical to those used in [221]. All CIFAR-10 networks were

trained for 100 epochs using the Adam optimizer with default parameters, unless

otherwise specified (learning rate: 0.001, beta1: 0.9, beta2: 0.999). Default layer

sizes were: 64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512, with strides of 1, 1,

2, 1, 1, 2, 1, 1, 2, 1, 1, respectively. All kernels were 3x3 and a batch size of 32.

Batch normalization layers were present after each convolutional layer. For the

experiments in Section 3.2, all layers were scaled equally by a constant factor ∈

0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0.

RNN Experiments: RNN experiments on PTB and WikiText2 followed the

experimental setup in [210] and [211]. In particular, we used the open sourced

model code1 for training the word level Penn TreeBank and WikiText-2 LSTM

models, (without finetuning or continuous cache pointer augmentation). All

hyperparameters were left unmodified, so experiments can be reproduced by

training LSTM models using the command to run main.py, and then applying

CCA to the hidden states, via the open source implementation2.

Toy Experiments: Generate k vectors in R2000 of ‘signal’ (iid standard normal),

for k ∈ 20, 50, 70, 80, 100, 120, 140, 160, 180, 199 and concatenate this Rk×2000 matrix

with a noise matrix: R(200−k)×2000 ∼ N(0, 0.1) to. (Note that the noise being lower

magnitude than the signal is something that we see in typical neural networks –

1https://github.com/salesforce/awd-lstm-lm
2https://github.com/google/svcca/

235

work on network compression has showing that pruning low magnitude weights

is an effective compression strategy.) Putting together gives matrix X, 200 (neu-

rons) by 2000 (datapoints). Apply a randomly sampled orthonormal transform

to the k by 2000 subset of X to get a new k by 2000 matrix, and again add iid noise

of dimensions (200 − k) by 2000 to get matrix Y . Apply CCA based methods to

detect similarity between X,Y . Of particular interest are cases k << 200 (low dim.

signal in noise).

B.0.5 Additional control experiments

Figure App.5: Cosine and Euclidean distance do not reveal the difference
in converged solutions between groups of generalizing and memorizing net-
works. Groups of 5 networks were trained on CIFAR-10 with either true labels
(generalizing) or random labels (memorizing). The pairwise cosine (left) and
eucldean (right) distance was then compared among generalizing networks,
memorizing networks, and between generalizing and memorizing networks
(inter) for each layer. While its invariance to linear transforms enabled CCA
distance to reveal a difference between groups generalizing and memorizing
networks in later layers (Figure 4.3), cosine and Euclidean distance fail to de-
tect this difference. Error bars represent mean ± std distance across pairwise
comparisons.

236

Figure App.6: Cosine and Euclidean distance do not reveal the relationship
between network size and similarity of converged solutions. Groups of 5
networks with different random initializations were trained on CIFAR-10. Each
group contained filter sizes of λ[64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512]
with λ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}. Pairwise cosine
(left) and Euclidean (right) distance was computed for each group of networks.
While CCA distance revealed that larger networks converge to more similar
solutions (Figure 4.4), cosine and Euclidean distance fail to find this relationship.
Error bars represent mean ± std distance across pairwise comparisons.

237

Figure App.7: Relationship between network size and similar-
ity of converged solutions is not present at initialization. Activa-
tions at initialization (random weights) and after training (learned
weights) were extracted from groups of 5 networks with differ-
ent random initializations from CIFAR-10 data. Each group con-
tained filter sizes of λ[64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512] with
λ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}. While CCA distance
decreases substantially for trained networks (from approximately 0.47 to 0.28),
CCA distance only decreased moderately (from approximately 0.67 to 0.63)
and plateaued past approximately 1000 filters. Error bars represent mean ± std
distance across pairwise comparisons.

238

[(a)]
0 100 200 300 400 500

Epoch Number

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Di

st
an

ce
PTB Learning Dynamics Cosine Distance

Layer
1
2
3

[(b)]
0 100 200 300 400 500

Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Eu
cli

de
an

 D
ist

an
ce

PTB Learning Dynamics Euclidean Distance
Layer

1
2
3

[(c)]
0 100 200 300 400 500 600 700

Epoch Number

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Di

st
an

ce

WikiText-2 Learning Dynamics Cosine Distance
Layer

1
2
3

[(d)]
0 100 200 300 400 500 600 700

Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Eu
cli

de
an

 D
ist

an
ce

WikiText-2 Euclidean Distance
Layer

1
2
3

[(e)]
0 100 200 300 400 500 600 700

Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Di

st
an

ce

WikiText-2 Cosine Distance Deeper LSTM
Layer

1
2
3
4
5

[(f)]
0 100 200 300 400 500 600 700

Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eu
cli

de
an

 D
ist

an
ce

WikiText-2 Euclidean Distance Deeper LSTM
Layer

layer 1
layer 2
layer 3
layer 4
layer 5

Figure App.8: Controls for RNN learning dynamics with cosine and Euclidean
distance To test whether layers converge to their final representation over the
course of training with a particular structure, we compared each layer’s repre-
sentation over the course of training to its final representation using cosine (a,
c, e) and Euclidean distance (b, d, f). In shallow RNNs trained on PTB (a-b),
and WikiText-2 (c-d), both cosine and Euclidean distance display properties of
bottom-up convergence, albeit with substantially more noise than CCA (4.6). In
deeper RNNs trained on WikiText-2, we observed a similar pattern (e-f).

239

[(a)] [(b)]

Figure App.9: Unweighted CCA and SVCCA also finds that generalizing
networks converge to more similar solutions than memorizing networks, but
misses several key features. While weighted CCA (Figure 4.3), unweighted
CCA (a), and SVCCA (b) reveal the same broad pattern across generalizing and
memorizing networks, unweighted CCA and SVCCA miss several key features.
First, unweighted CCA misses the fact that generalizing networks become more
similar to one another in the final two layers. Second, both unweighted CCA and
SVCCA overestimate the distance between networks in early layers. Error bars
represent mean ± std unweighted mean CCA and unweighted mean SVCCA
distance across pairwise comparisons.

Figure App.10: On test data, generalizing networks converge to similar solu-
tions at the softmax, but memorizing networks do not. Groups of 5 networks
were trained on CIFAR-10 with either true labels (generalizing) or random la-
bels (memorizing). The pairwise CCA distance was then compared within each
group and between generalizing and memorizing networks (inter) for each layer,
based on the test data. At the softmax, sets of generalizing networks converged
to similar (though not identical) solutions, but memorizing networks did not,
reflecting the diverse strategies used by memorizing networks to memorize the
training data. Error bars represent mean ± std weighted mean CCA distance
across pairwise comparisons.

240

APPENDIX C

CHAPTER 5 APPENDIX

C.1 Few-Shot Image Classification Datasets and Experimental

Setups

We consider the few-shot learning paradigm for image classification to evaluate

MAML and ANIL. We evaluate using two datasets often used for few-shot

multiclass classification – the Omniglot dataset and the MiniImageNet dataset.

Omniglot: The Omniglot dataset consists of over 1600 different handwritten

character classes from 23 alphabets. The dataset is split on a character-level, so

that certain characters are in the training set, and others in the validation set.

We consider the 20-way 1-shot and 20-way 5-shot tasks on this dataset, where

at test time, we wish our classifier to discriminate between 20 randomly chosen

character classes from the held-out set, given only 1 or 5 labelled example(s) from

each class from this set of 20 testing classes respectively. The model architecture

used is identical to that in the original MAML paper, namely: 4 modules with a 3

x 3 convolutions and 64 filters with a stride of 2, followed by batch normalization,

and a ReLU nonlinearity. The Omniglot images are downsampled to 28 x 28,

so the dimensionality of the last hidden layer is 64. The last layer is fed into a

20-way softmax. Our models are trained using a batch size of 16, 5 inner loop

updates, and an inner learning rate of 0.1.

241

MiniImageNet: The MiniImagenet dataset was proposed by ravi2016optimization,

and consists of 64 training classes, 12 validation classes, and 24 test classes. We

consider the 5-way 1-shot and 5-way 5-shot tasks on this dataset, where the

test-time task is to classify among 5 different randomly chosen validation classes,

given only 1 and 5 labelled examples respectively. The model architecture is

again identical to that in the original paper: 4 modules with a 3 x 3 convolutions

and 32 filters, followed by batch normalization, ReLU nonlinearity, and 2 x 2

max pooling. Our models are trained using a batch size of 4. 5 inner loop update

steps, and an inner learning rate of 0.01 are used. 10 inner gradient steps are

used for evaluation at test time.

C.2 Additional Details and Results: Freezing and Representa-

tional Similarity

In this section, we provide further experimental details and results from freezing

and representational similarity experiments.

C.2.1 Experimental Details

We concentrate on MiniImageNet for our experiments in Section 5.2.2, as it is

more complex than Omniglot.

The model architecture used for our experiments is identical to that in the

original paper: 4 modules with a 3 × 3 convolutions and 32 filters, followed by

242

batch normalization, ReLU nonlinearity, and 2 × 2 max pooling. Our models are

trained using a batch size of 4, 5 inner loop update steps, and an inner learning

rate of 0.01. 10 inner gradient steps are used for evaluation at test time. We train

models 3 times with different random seeds. Models were trained for 30000

iterations.

C.2.2 Details of Representational Similarity

CCA takes in as inputs L1 = {z(1)
1 , z(1)

2 , ..., z(1)
m } and L2 = {z(2)

1 , z(1)
2 , ..., z(2)

n }, where

L1, L2 are layers, and z(j)
i is a neuron activation vector: the vector of outputs of

neuron i (of layer L j) over a set of inputs X. It then finds linear combinations

of the neurons in L1 and neurons in L2 so that the resulting activation vectors

are maximally correlated, which is summarized in the canonical correlation

coefficient. Iteratively repeating this process gives a similarity score (in [0, 1]

with 1 identical and 0 completely different) between the representations of L1

and L2.

We apply this to compare corresponding layers of two networks, net1 and

net2, where net1 and net2 might differ due to training step, training method

(ANIL vs MAML) or the random seed. When comparing convolutional layers,

as described in svccaurl, we perform the comparison over channels, flattening

out over all of the spatial dimensions, and then taking the mean CCA coefficient.

We average over three random repeats.

243

C.2.3 Similarity Before and After Inner Loop with Euclidean

Distance

In addition to assessing representational similarity with CCA/CKA, we also con-

sider the simpler measure of Euclidean distance, capturing how much weights

of the network change during the inner loop update (task-specific finetuning).

We note that this experiment does not assess functional changes on inner loop

updates as well as the CCA experiments do; however, they serve to provide

useful intuition.

We plot the per-layer average Euclidean distance between the initialization θ

and the finetuned weights θ(b)
m across different tasks Tb, i.e.

1
N

N∑
b=1

||(θl) − (θl)(b)
m ||

across different layers l, for MiniImageNet in Figure App.1. We observe that very

quickly after the start of training, all layers except for the last layer have small

Euclidean distance difference before and after finetuning, suggesting significant

feature reuse. (Note that this is despite the fact that these layers have more

parameters than the final layer.)

C.2.4 CCA Similarity Across Random Seeds

The experiment in Section 5.2.2 compared representational similarity of L1 and

L2 at different points in training (before/after inner loop adaptation) but corre-

sponding to the same random seed. To complete the picture, it is useful to study

whether representational similarity across different random seeds is also mostly

244

0 5000 10000 15000 20000 25000 30000
Training iteration

0.0

0.2

0.4

0.6

0.8

MiniImageNet-5way-1shot:
 Weight differences after finetune

conv1
conv2
conv3
conv4
w5

0 5000 10000 15000 20000 25000 30000
Training iteration

0.2

0.4

0.6

0.8

1.0

MiniImageNet-5way-5shot:
 Weight differences after finetune

conv1
conv2
conv3
conv4
w5

Figure App.1: Euclidean distance before and after finetuning for MiniImageNet. We
compute the average (across tasks) Euclidean distance between the weights before and
after inner loop adaptation, separately for different layers. We observe that all layers
except for the final layer show very little difference before and after inner loop adaptation,
suggesting significant feature reuse.

unaffected by the inner loop adaptation. This motivates four natural compar-

isons: assume layer L1 is from the first seed, and layer L2 is from the second seed.

Then we can compute the representational similarity between (L1 pre, L2 pre),

(L1 pre, L2 post), (L1 post, L2 pre) and (L1 post, L2 post), where pre/post signify

whether we take the representation before or after adaptation.

Prior work has shown that neural network representations may vary across

different random seeds raghu2017svcca, morcos2018insights, li2015convergent,

Wang2018ToWE, organically resulting in CCA similarity scores much less than

1. So to identify the effect of the inner loop on the representation, we plot the

CCA similarities of (i) (L1 pre, L2 pre) against (L1 pre, L2 post) and (ii) (L1 pre,

L2 pre) against (L1 post, L2 pre) and (iii) (L1 pre, L2 pre) against (L1 post, L2

post) separately across the different random seeds and different layers. We then

compute the line of best fit for each plot. If the line of best fit fits the data and

is close to y = x, this suggests that the inner loop adaptation doesn’t affect the

features much – the similarity before adaptation is very close to the similarity

after adaptation.

245

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
CCA Similarity (Pre 1, Pre 2)

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

CC
A

Si
m

ila
rit

y
(P

re
 1

, P
os

t 2
)

(Pre, Pre) vs (Pre, Post)
 CCA Similarity Across Seeds
LR y=0.999x -0.001
Conv1
Conv2
Conv3
Conv4

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
CCA Similarity (Pre 1, Pre 2)

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

CC
A

Si
m

ila
rit

y
(P

os
t 1

, P
re

 2
)

(Pre, Pre) vs (Post, Pre)
 CCA Similarity Across Seeds
LR y=1.014x -0.010
Conv1
Conv2
Conv3
Conv4

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
CCA Similarity (Pre 1, Pre 2)

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

CC
A

Si
m

ila
rit

y
(P

os
t 1

, P
os

t 2
)

(Pre, Pre) vs (Post, Post)
 CCA Similarity Across Seeds
LR y=0.988x + 0.005
Conv1
Conv2
Conv3
Conv4

Figure App.2: Computing CCA similarity pre/post adaptation across different ran-
dom seeds further demonstrates that the inner loop doesn’t change representations
significantly. We compute CCA similarity of L1 from seed 1 and L2 from seed 2, varying
whether we take the representation pre (before) adaptation or post (after) adaptation.
To isolate the effect of adaptation from inherent variation in the network representa-
tion across seeds, we plot CCA similarity of of the representations before adaptation
against representations after adaptation in three different combinations: (i) (L1 pre, L2
pre) against (L1 pre, L1 post), (ii) (L1 pre, L2 pre) against (L1 pre, L1 post) (iii) (L1 pre,
L2 pre) against (L1 post, L2 post). We do this separately across different random seeds
and different layers. Then, we compute a line of best fit, finding that in all three plots,
it is almost identical to y = x, demonstrating that the representation does not change
significantly pre/post adaptation. Furthermore a computation of the coefficient of deter-
mination R2 gives R2 ≈ 1, illustrating that the data is well explained by this relation. In
Figure App.3, we perform this comparison with CKA, observing the same high level
conclusions.

The results are shown in Figure App.2. In all of the plots, we see that the line

of best fit is almost exactly y = x (even for the pre/pre vs post/post plot, which

could conceivably be more different as both seeds change) and a computation of

the coefficient of determination R2 gives R2 ≈ 1 for all three plots. Putting this

together with Figure 5.2, we can conclude that the inner loop adaptation step

246

0.65 0.70 0.75 0.80 0.85 0.90 0.95
CKA Similarity (Pre 1, Pre 2)

0.70

0.75

0.80

0.85

0.90

0.95

CK
A

Si
m

ila
rit

y
(P

os
t 1

, P
os

t 2
)

(Pre, Pre) vs (Post, Post)
 CKA Similarity Across Seeds

LR y=0.844x + 0.143
Conv1
Conv2
Conv3
Conv4

Figure App.3: We perform the same comparison as in Figure App.2, but with CKA
instead. There is more variation in the similarity scores, but we still see a strong correla-
tion between (Pre, Pre) and (Post, Post) comparisons, showing that representations do
not change significantly over the inner loop.

doesn’t affect the representation learned by any layer except the head, and that

the learned representations and features are mostly reused as is for the different

tasks.

C.2.5 MiniImageNet-5way-1shot Freezing and CCA Over

Training

Figure App.4 shows that from early on in training, on MiniImageNet-5way-1shot,

that the CCA similarity between activations pre and post inner loop update is

very high for all layers but the head. We further see that the validation set

accuracy suffers almost no decrease if we remove the inner loop updates and

freeze all layers but the head. This shows that even early on in training, the inner

loop appears to have minimal effect on learned representations and features.

This supplements the results seen in Figure 5.3 on MiniImageNet-5way-5shot.

247

None 1 1,2 1,2,3 1,2,3,4
Layers Frozen

40

45

50

Te
st

 A
cc

ur
ac

y

Test Set Accuracy Freezing
 Consecutive Layers in Inner Loop

Iteration 10000; None: 45.4%; (1,2,3,4): 45.6%
Iteration 20000; None: 46.8%; (1,2,3,4): 46.9%
Iteration 30000; None: 46.9%; (1,2,3,4): 46.3%

Conv1 Conv2 Conv3 Conv4 Head
Layer

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CC
A

Si
m

ila
rit

y

CCA Similarity Before and After
 Inner Loop Adaptation

Iteration 10000
Iteration 20000
Iteration 30000

Figure App.4: Inner loop updates have little effect on learned representations from
early on in learning. We consider freezing and representational similarity experiments
for MiniImageNet-5way-1shot. We see that early on in training (from as few as 10k
iterations in), the inner loop updates have little effect on the learned representations
and features, and that removing the inner loop updates for all layers but the head have
little-to-no impact on the validation set accuracy.

C.3 ANIL Algorithm: More Details

In this section, we provide more details about the ANIL algorithm, including an

example of the ANIL update, implementation details, and further experimental

results.

C.3.1 An Example of the ANIL Update

Consider a simple, two layer linear network with a single hidden unit in each

layer: ŷ(x; θ) = θ2(θ1x). In this example, θ2 is the head. Consider the 1-shot

regression problem, where we have access to examples
{
(x(t)

1 , y
(t)
1), (x(t)

2 , y
(t)
2)

}
for

tasks t = 1, . . . ,T . Note that (x(t)
1 , y

(t)
1) is the (example, label) pair in the meta-

training set (used for inner loop adaptation – support set), and (x(t)
2 , y

(t)
2) is the

pair in the meta-validation set (used for the outer loop update – target set).

248

In the few-shot learning setting, we firstly draw a set of N tasks and labelled

examples from our meta-training set:
{
(x(1)

1 , y(1)
1), . . . , (x(N)

1 , y(N)
1)

}
. Assume for sim-

plicity that we only apply one gradient step in the inner loop. The inner loop

updates for each task are thus defined as follows:

θ(t)
1 ← θ1 −

∂L(ŷ(x(t)
1 ; θ), y(t)

1)
∂θ1

(C.1)

θ(t)
2 ← θ2 −

∂L(ŷ(x(t)
1 ; θ), y(t)

1)
∂θ2

(C.2)

where L(·, ·) is the loss function, (e.g. mean squared error) and θ(t)
i refers to a

parameter after inner loop update for task t.

The task-adapted parameters for MAML and ANIL are as follows. Note how

only the head parameters change per-task in ANIL:

θ(t)
MAML =

[
θ(t)

1 , θ
(t)
2

]
(C.3)

θ(t)
ANIL =

[
θ1, θ

(t)
2

]
(C.4)

In the outer loop update, we then perform the following operations using the

data from the meta-validation set:

θ1 ← θ1 −

N∑
t=1

∂L(ŷ(x(t)
2 ; θ(t)), y(t)

2)
∂θ1

(C.5)

θ2 ← θ2 −

N∑
t=1

∂L(ŷ(x(t)
2 ; θ(t)), y(t)

2)
∂θ2

(C.6)

Considering the update for θ1 in more detail for our simple, two layer, linear

network (the case for θ2 is analogous), we have the following update for MAML:

249

θ1 ← θ1 −

N∑
t=1

∂L(ŷ(x(t)
2 ; θ(t)

MAML), y(t)
2)

∂θ1
(C.7)

ŷ(x(t)
2 ; θ(t)

MAML) =

θ2 −
∂L(ŷ(x(t)

1 ; θ), y(t)
1)

∂θ2

 · θ1 −
∂L(ŷ(x(t)

1 ; θ), y(t)
1)

∂θ1

 · x2

 (C.8)

For ANIL, on the other hand, the update will be:

θ1 ← θ1 −

N∑
t=1

∂L(ŷ(x(t)
2 ; θ(t)

ANIL), y(t)
2)

∂θ1
(C.9)

ŷ(x(t)
2 ; θ(t)

ANIL) =

θ2 −
∂L(ŷ(x(t)

1 ; θ), y(t)
1)

∂θ2

 · θ1 · x2

 (C.10)

Note the lack of inner loop update for θ1, and how we do not remove second

order terms in ANIL (unlike in first-order MAML); second order terms still

persist through the derivative of the inner loop update for the head parameters.

C.3.2 ANIL Learns Almost Identically to MAML

We implement ANIL on MiniImageNet and Omniglot, and generate learning

curves for both algorithms in Figure App.5. We find that learning proceeds

almost identically for ANIL and MAML, showing that removing the inner loop

has little effect on the learning dynamics.

250

0 5000 10000 15000 20000 25000 30000
Training iteration

5.5

6.0

6.5

7.0

7.5

8.0

Lo
ss

Loss curves
MAML train loss
MAML val loss
ANIL train loss
ANIL val loss

0 5000 10000 15000 20000 25000 30000
Training iteration

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Accuracy curves

MAML train acc
MAML val acc
ANIL train acc
ANIL val acc

MiniImageNet-5way-1shot

0 5000 10000 15000 20000 25000 30000
Training iteration

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Lo
ss

Loss curves
MAML train loss
MAML val loss
ANIL train loss
ANIL val loss

0 5000 10000 15000 20000 25000 30000
Training iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Accuracy curves

MAML train acc
MAML val acc
ANIL train acc
ANIL val acc

MiniImageNet-5way-5shot

0 5000 10000 15000 20000 25000 30000
Training iteration

4

6

8

10

12

14

16

18

Lo
ss

Loss curves
MAML train loss
MAML val loss
ANIL train loss
ANIL val loss

0 5000 10000 15000 20000 25000 30000
Training iteration

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Accuracy curves

MAML train acc
MAML val acc
ANIL train acc
ANIL val acc

Omniglot-20way-1shot

Figure App.5: ANIL and MAML on MiniImageNet and Omniglot. Loss and accuracy
curves for ANIL and MAML on (i) MiniImageNet-5way-1shot (ii) MiniImageNet-5way-
5shot (iii) Omniglot-20way-1shot. These illustrate how both algorithms learn very
similarly over training.

251

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
CCA Similarity (MAML, MAML)

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

CC
A

Si
m

ila
rit

y
(A

NI
L,

 M
AM

L)

(MAML, MAML) vs (ANIL, MAML)
 CCA Similarity

LR y=0.973x +0.013
Conv1
Conv2
Conv3
Conv4

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
CCA Similarity (ANIL, MAML)

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

CC
A

Si
m

ila
rit

y
(A

NI
L,

 A
NI

L)

(ANIL, MAML) vs (ANIL, ANIL)
 CCA Similarity

LR y=0.984x +0.012
Conv1
Conv2
Conv3
Conv4

Figure App.6: Computing CCA similarity across different seeds of MAML and
ANIL networks suggests these representations are similar. We plot the CCA simi-
larity between an ANIL seed and a MAML seed, plotted against (i) the MAML seed
compared to a different MAML seed (ii) the ANIL seed compared to a different ANIL
seed. We observe a strong correlation of similarity scores in both (i) and (ii). This tells
us that (i) two MAML representations vary about as much as MAML and ANIL rep-
resentations (ii) two ANIL representations vary about as much as MAML and ANIL
representations. In particular, this suggests that MAML and ANIL learn similar features,
despite having significant algorithmic differences.

C.3.3 ANIL and MAML Learn Similar Representations

We compute CCA similarities across representations in a MAML seed and an

ANIL seed, and then plot these against the same MAML seed representation

compared to a different MAML seed (and similarly for ANIL). We find a strong

correlation between these similarities (Figure App.6), which suggests that MAML

and ANIL are learning similar representations, despite their algorithmic differ-

ences. (ANIL and MAML are about as similar to each other as two ANILs are to

each other, or two MAMLs are to each other.)

252

C.3.4 ANIL Implementation Details

Supervised Learning Implementation: We used the TensorFlow MAML im-

plementation open-sourced by the original authors finn2017model. We used the

same model architectures as in the original MAML paper for our experiments,

and train models 3 times with different random seeds. All models were trained

for 30000 iterations, with a batch size of 4, 5 inner loop update steps, and an

inner learning rate of 0.01. 10 inner gradient steps were used for evaluation at

test time.

Reinforcement Learning Implementation: We used the open source PyTorch

implementation of MAML for RL 1, due to challenges encountered when running

the open-sourced TensorFlow implementation from the original authors. We

note that the results for MAML in these RL domains do not exactly match those

in the original paper; this may be due to large variance in results, depending on

the random initialization. We used the same model architecture as the original

paper (two layer MLP with 100 hidden units in each layer), a batch size of 40,

1 inner loop update step with an inner learning rate of 0.1 and 20 trajectories

for inner loop adaptation. We trained three MAML and ANIL models with

different random initialization, and quote the mean and standard deviation of

the results. As in the original MAML paper, for RL experiments, we select the

best performing model over 500 iterations of training and evaluate this model at

test time on a new set of tasks.
1https://github.com/tristandeleu/pytorch-maml-rl

253

https://github.com/tristandeleu/pytorch-maml-rl

C.3.5 ANIL is Computationally Simpler Than MAML

Table App.1 shows results from a comparison of the computation time for MAML,

First Order MAML, and ANIL, during training and inference, with the Tensor-

Flow implementation described previously, on both MiniImageNet domains.

These results are average time for executing forward and backward passes during

training (above) and a forward pass during inference (bottom), for a task batch

size of 1, and a target set size of 1. Results are averaged over 2000 such batches.

Speedup is calculated relative to MAML’s execution time. Each batches’ images

were loaded into memory before running the TensorFlow computation graph, to

ensure that data loading time was not captured in the timing. Experiments were

run on a single NVIDIA Titan-Xp GPU.

During training, we see that ANIL is as fast as First Order MAML (which

does not compute second order terms during training), and about 1.7x as fast

as MAML. This leads to a significant overall training speedup, especially when

coupled with the fact that the rate of learning for these ANIL and MAML is

very similar; see learning curves in Appendix C.3.2. Note that unlike First Order

MAML, ANIL also performs very comparably to MAML on benchmark tasks

(on some tasks, First Order MAML performs worse finn2017model). During

inference, ANIL achieves over a 4x speedup over MAML (and thus also 4x over

First Order MAML, which is identical to MAML at inference time). Both training

and inference speedups illustrate the significant computational benefit of ANIL

over MAML.

254

Training: 5way-1shot
Mean (s) Median (s) Speedup

MAML 0.15 0.13 1
First Order MAML 0.089 0.083 1.69

ANIL 0.084 0.072 1.79

Training: 5way-5shot
Mean (s) Median (s) Speedup

MAML 0.68 0.67 1
First Order MAML 0.40 0.39 1.7

ANIL 0.37 0.36 1.84.

Inference: 5way-1shot
Mean (s) Median (s) Speedup

MAML 0.083 0.078 1
ANIL 0.020 0.017 4.15

Inference: 5way-5shot
Mean (s) Median (s) Speedup

MAML 0.37 0.36 1
ANIL 0.076 0.071 4.87

Table App.1: ANIL offers significant computational speedup over MAML, during
both training and inference. Table comparing execution times and speedups of MAML,
First Order MAML, and ANIL during training (above) and inference (below) on Mini-
ImageNet domains. Speedup is calculated relative to MAML’s execution time. We see
that ANIL offers noticeable speedup over MAML, as a result of removing the inner loop
almost completely. This permits faster training and inference.

C.4 Further Results on the Network Head and Body

C.4.1 Training Regimes for the Network Body

We add to the results of Section 5.4.2 in the main text by seeing if training a

head and applying that to the representations at test time (instead of the NIL

255

algorithm) gives in any change in the results. As might be predicted by Section

5.4.1, we find no change the results.

More specifically, we do the following:

• We train MAML/ANIL networks as standard, and do standard test time

adaptation.

• For multiclass training, we first (pre)train with multiclass classification,

then throw away the head and freeze the body. We initialize a new e.g.

5-class head, and train that (on top of the frozen multiclass pretrained

features) with MAML. At test time we perform standard adaptation.

• The same process is applied to multitask training.

• A similar process is applied to random features, except the network is

initialized and then frozen.

The results of this, along with the results from Table 5.5 in the main text is

shown in Table App.2. We observe very little performance difference between

using a MAML/ANIL head and a NIL head for each training regime. Specifi-

cally, task performance is purely determined by the quality of the features and

representations learned during training, with task-specific alignment at test time

being (i) unnecessary (ii) unable to influence the final performance of the model

(e.g. multitask training performance is equally with a MAML head as it is with a

NIL-head.)

256

Method MiniImageNet-5way-1shot

MAML training-MAML head 46.9 ± 0.2
MAML training-NIL head 48.4 ± 0.3
ANIL training-ANIL head 46.7 ± 0.4
ANIL training-NIL head 48.0 ± 0.7

Multiclass pretrain-MAML head 38.4 ± 0.8
Multiclass pretrain-NIL head 39.7 ± 0.3
Multitask pretrain-MAML head 26.5 ± 0.8
Multitask pretrain-NIL head 26.5 ± 1.1

Random features-MAML head 32.1 ± 0.5
Random features-NIL head 32.9 ± 0.6

Method MiniImageNet-5way-5shot

MAML training-MAML head 63.1 ± 0.4
MAML training-NIL head 61.5 ± 0.8
ANIL training-ANIL head 61.5 ± 0.5
ANIL training-NIL head 62.2 ± 0.5

Multiclass pretrain-MAML head 54.6 ± 0.4
Multiclass pretrain-NIL head 54.4 ± 0.5
Multitask pretrain-MAML head 32.8 ± 0.6
Multitask pretrain-NIL head 34.2 ± 3.5

Random features-MAML head 43.1 ± 0.3
Random features-NIL head 43.2 ± 0.5

Table App.2: Test time performance is dominated by features learned, with no dif-
ference between NIL/MAML heads. We see identical performances of MAML/NIL
heads at test time, indicating that MAML/ANIL training leads to better learned features.

C.4.2 Representational Analysis of Different Training Regimes

In Table App.3 we include results on using CCA and CKA on the representations

learned by the different training methods. Specifically, we studied how similar

representations of different training methods were to MAML training, finding a

direct correlation with performance – training schemes learning representations

most similar to MAML also performed the best. We computed similarity scores

257

Feature pair CCA Similarity CKA Similarity

(MAML, MAML) 0.51 0.83

(Multiclass pretrain, MAML) 0.48 0.79
(Random features, MAML) 0.40 0.72

(Multitask pretrain, MAML) 0.28 0.65

Table App.3: MAML training most closely resembles multiclass pretraining, as il-
lustrated by CCA and CKA similarities. On analyzing the CCA and CKA similarities
between different baseline models and MAML (comparing across different tasks and
seeds), we see that multiclass pretraining results in features most similar to MAML
training. Multitask pretraining differs quite significantly from MAML-learned features,
potentially due to the alignment problem.

by averaging the scores over the first three conv layers in the body of the network.

258

APPENDIX D

CHAPTER 6 APPENDIX

D.1 Details on Datasets, Models and Hyperparameters

The Retina dataset consisted of around 250k training images, and 70k test images.

The train test split was done by patient id (as is standard for medical datasets) to

ensure no accidental similarity between the train/test dataset. The chest x-ray

dataset is open sourced and available from [138], which has all of the details.

Briefly, they have 223k training images and binary indicator for multiple diseases

assiciated with each image extracted automatically from the meta data. The

standard ImageNet (ILSVRC 2012) dataset was also used to pretrain models.

For dataset preprocessing we used mild random cropping, as well as standard

normalization by the mean and standard deviation for ImageNet. We augmented

the data with hue and contrast augmentations. For the Retina data, we used

random horizontal and vertical flips, and for the chest x-ray data, we did not do

random flip. We did not do model specific hyperparameter tuning on each target

data, and used fixed standard hyperparameters.

For experiments on the Retina data, we trained the standard ImageNet mod-

els, Resnet50 and Inception-v3, by replacing the final 1000 class ImageNet classi-

fication head with a five class head for DR diagnosis, or five classes for the five

different chest x-ray diseases. We use the sigmoid activation at the top instead

of the multiclass softmax activation, and the train the models in the multi-label

binary classification framework.

259

The CBR family of small convolutional neural networks consists of multiple

conv2d-batchnorm-relu layers followed by a maxpool. Each maxpool has spatial

window (3x3) and stride (2x2). For each CBR architecture, there is one filter size

for all the convolutions (which all have stride 1). Below, conv-n denotes a 2d

convolutionl with n output channels.

• CBR-LargeT(all) has 7x7 conv filters: (conv32-bn-relu) maxpool (conv64-

bn-relu) maxpool (conv128-bn-relu) maxpool (conv256-bn-relu) maxpool

(conv512-bn-relu) global avgpool, classification

• CBR-LargeW(ide) has 7x7 conv filters: (conv64-bn-relu) maxpool (conv128-

bn-relu) maxpool (conv256-bn-relu) maxpool (conv512-bn-relu) maxpool,

global avgpool, classification.

• CBR-Small has 7x7 conv filters: (conv32-bn-relu) maxpool (conv64-bn-relu)

maxpool (conv128-bn-relu) maxpool (conv256-bn-relu) maxpool global

avgpool, classification

• CBR-Tiny has 5x5 conv filters: (conv64-bn-relu) maxpool (conv128-bn-relu)

maxpool (conv256-bn-relu) maxpool (conv512-bn-relu) maxpool, global

avgpool, classification.

The models on Retina are trained on 587 × 587 images, with learning rate

0.001 and a batch size of 8 (for memory considerations.) The Adam optimizer

is used. The models on the chest x-ray are trained on 224 × 224 images, with a

batch size of 32, and vanilla SGD with momentum (coefficient 0.9). The learning

rate scheduling is inherited from the ImageNet training pipeline, which warms

up from 0 to 0.1 × 32
256 in 5 epochs, and then decay with a factor of 10 on epoch 30,

60, and 90, respectively.

260

Model Init Method 5k 10k 50k 100k

Resnet50 ImageNet Pretrained 94.6% 94.8% 95.7% 96.0
Resnet50 Random Init 92.2% 93.3% 95.3% 95.9%
CBR-LargeT Random Init 93.6% - - -
CBR-LargeT Pretrained 93.9% - - -
CBR-LargeW Random Init 93.6% - - -
CBR-LargeW Pretrained 93.7% - - -

Resnet50 Conv1 Pretrained 92.9% - - -

Resnet50 Mean Var Init - 94.4% 95.5% 95.8%

Table App.1: Additional performance results when varying initialization and the
dataset size on the Retina task. For Resnet50, we show performances when training
on very small amounts of data. We see that even finetuning (with early stopping) on
5k datapoints beats the results from performing fixed feature extraction, Figure App.4,
suggesting finetuning should always be preferred. For 5k, 10k datapoints, we see a
larger gap between transfer learning and random init (closed by 50k datapoints) but this
is likely due to the enormous size of the model (typically trained on 1 million datapoints)
compared to the dataset size. This is supported by evaluating the effect of transfer on
CBR-LargeT and CBR-LargeW, where transfer again does not help much. (These are one
third the size of Resnet50, and we expect the gains of transfer to be even more minimal
for CBR-Small and CBR-Tiny.) We also show results for using the MeanVar init, and see
some gains in performance for the very small data setting. We also see a small gain on
5k datapoints when just reusing the conv1 weights for Resnet50.

D.2 Additional Dataset Size Results

Complementing the data varying experiments in the main text, we additional

experiments on varying the amount of training data, fidning that for around

50k datapoints, we return to only seeing a fractional improvement of transfer

learning. Future work could study how hybrid approaches perform when less

data is available.

261

D.3 CCA Details

For full details on the implementation of CCA, we reference prior work

[253, 220], as well as the open sourced code (the source of our implementation):

https://github.com/google/svcca

One challenge we face when implementing CCA is the large size of the

convolutional activations. These activations have shape (n, h,w, c), where n is the

number of datapoints, c the number of channels, and h,w the spatial dimensions.

These values all vary significantly across the network, e.g. conv1 has shape

(n, 294, 294, 64), while activations at the end of block 3 have shape (n, 19, 19, 1024).

Because CCA is sensitive to both the number of datapoints n (actually hwn for

convolutional layers) and the number of neurons – c for large convolutional

layers – there is large variations in scaling across different layers in the model. To

address this, we do the following: let L and L′ be the layers we want to compare,

with shape (height, width, channels), (hL,wL, cL). We apply CCA as follows:

• Pick p, the total number of image patches to compute activation vectors

and CCA over, and d, the maximum number of neuron activation vectors

to correlate with

• Pick the number of datapoints n so that nhLwL = p.

• Sample d of the cL channels, and apply CCA to the resulting d x nhLwL

activation matrices.

• Repeat over samples of d and n.

This works much better than prior approaches of averaging over all of the spatial

262

dimensions [220], or flattening across all of the neurons [253] (too computation-

ally expensive in this setting.)

D.4 Additional Results from Representation Analysis

Description Conv1 Block1 Block2 Block3 Block4

Resnet50 CCA(ImNet1, ImNet2) 0.865 0.559 0.421 0.343 0.313
Resnet50 CCA(Rand1, Rand2) 0.647 0.369 0.277 0.256 0.276
Resnet50 Diff 0.218 0.191 0.144 0.086 0.037

Description Pool1 Pool2 Pool3 Pool4

CBR-Small CCA(ImNet1, ImNet2) 0.825 0.709 0.477 0.395
CBR-Small CCA(Rand1, Rand2) 0.723 0.541 0.401 0.349
CBR-Small Diff 0.102 0.168 0.076 0.046

Table App.2: Representational comparisons between trained ImageNet models with
different seeds highlight the variation of behavior in higher and lower layers, and
differences between larger and smaller models. We compute CCA similarity between
representations at different layers when training from different random seeds with (i)
(the same) pretrained weights (ii) different random inits, for Resnet and CBR-Small.
The results support the conclusions of the main text. For Resnet50, in the lowest layers
such as Conv1 and Block1, we see that representations learned when using (the same)
pretrained weights are much more similar to each other (diff 0.2 in CCA score) than
representations learned from different random initializations. This ∼ 0.2 difference is
also much higher than (somewhat) corresponding differences in CBR-Small, for Pool1,
Pool2. Actually, as Resnet50 is much deeper, the large difference in Block1 is very striking.
(Block 1 alone contains much more layers than all of CBR-Small.) By Block3 and Block4
however, the CCA similarity difference between pretrained representations and those
from random initialization is much smaller, and slightly lower than the differences for
Pool3, Pool4 in CBR-Small, suggesting that pretrained weights are not having much of a
difference on the kinds of functions learned. For CBR-Small, we also see that pretrained
weights result in larger differences between the representations in the lower layers, but
these become much smaller in the higher layers. We also observe that representations in
CBR-Small trained from random initialization (especially in the lower layers e.g. Pool1)
are more similar to each other than in Resnet50, suggesting things move more.

Here, we include some additional results studying the representations of

these models. We perform more representational similarity comparisons be-

263

tween networks trained from (the same) pretrained weights (as is standard), but

different random seeds. We do this for Resnet50 (a large model) and CBR-Small

(a small model), and Table App.2 includes these results as well as similarity com-

parisons for networks trained with different random seeds and different random

initializations as a baseline. The comparisons across layers and models is slightly

involved, but as we detail below, the evidence further supports the conclusions

in the main text:

• Larger models change less through training. Comparing CCA similarity scores

across models is a little challenging, due to different scalings, so we look

at the difference in CCA similarity between two models trained with pre-

trained weights, and two models trained from random initialization, for

Resnet50 and CBR-Small. Comparing this value for Conv1 (in Resnet50) to

Pool1 (in CBR-Small), we see that pretraining results in much more similar

representations compared to random initialization in the large model over

the small model.

• The effect of pretraining is mostly limited to the lowest layers For higher layers,

the CCA similarities between representations using pretrained weights

and those trained from random initializations are closer, and the difference

between CBR-Small and Resnet-50 is non-existent, suggesting that the

effects of pretraining mostly affect the lowest layers across models, with

finetuning changing representations at the top.

Figure App.1 and Figure App.2 compare the first layer filters between transfer

learning and training from random initialization on the CheXpert data for the

CBR-Small and Resnet-50 architectures, respectively. Those results complement

Figure 6.5 in the main text.

264

(a) rand init (b) final (rand init) (c) transfer init (d) final (transfer)

Figure App.1: First layer filters of CBR-Small on the CheXpert data. (a) and (c) show
the randomly initialized filters and filters initialized from a model (the same architecture)
pre-trained on ImageNet. (b) and (d) shows the final converged filters from the two
different initializations, respectively.

(a) rand init (b) final (rand init) (c) transfer init (d) final (transfer)

Figure App.2: First layer filters of Resnet-50 on the CheXpert data. (a) and (c) show
the randomly initialized filters and filters initialized from a model (the same architecture)
pre-trained on ImageNet. (b) and (d) shows the final converged filters from the two
different initializations, respectively.

Rand Init Pretrained Rand Init Pretrained

Large (Overparametrized)
Models

Small Models

w0

wT

w0

wT

w0

wT
wT

w0

Figure App.3: Larger models move less through training than smaller networks. A
schematic diagram of our intuition for optimization for larger and smaller models.

265

D.5 The Fixed Feature Extraction Setting

To complete the picture, we also study the fixed feature extractor setting. While

the most popular methodology for transfer learning is to initialize from pre-

trained weights and fine-tune (train) the entire network, an alternative is to

initialize all layers up to layer L with pretrained weights. These are then treated

as a fixed feature extractor, with only layers L + 1 onwards, being trained. There

are two variants of this fixed feature extractor experiment: [1] Initialize all layers

with pretrained weights and only train layer L + 1 onwards. [2] Initialize only up

to layer L with pretrained weights, and layer L + 1 onwards randomly; then train

only layers L + 1 onwards.

We implement both of these versions across different models trained on the

Retina task in Figure App.4, and CheXpert in Figure App.5, including a baseline

of using random features – initializing the network randomly, freezing up to

layer L, and training layer L + 1 onwards. For the Retina task, we see that

the pretrained ImageNet features perform significantly better than the random

features baseline, but this gap is significantly closer on the chest x-rays.

More surprisingly however, there is little difference in performance between

initializing all layers with pretrained weights and only up to layer L with pre-

trained weights. This latter experiment has also been studied in [360], where

they found that re-initializing caused drops in performance due to co-adaptation,

where neurons in different layers have evolved together in a way that is not

easily discoverable through retraining. This analysis was done for highly similar

tasks (different subsets of ImageNet), and we hypothesise that in our setting, the

significant changes of the higher layers (Figures 6.3, 6.4) means that the correct

266

none block1 block2 block3 block4

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Resnet50 Freeze Layers

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4 conv5

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

CBR-LargeT Freeze Layers

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0
A

U
C

CBR-Tiny Freeze Layers

Random Init

Full Imagenet Init

Partial Imagenet Init

Figure App.4: ImageNet features perform well as fixed feature extractors on the
Retina task, and are robust to coadaptation performance drops. We initialize (i) the
full architecture with ImageNet weights (yellow) (ii) up to layer L with ImageNet weights,
and the rest randomly. In both, we keep up to layer L fixed, and only train layers L + 1
onwards. We compare to a random features baseline, initializing randomly and training
layer L + 1 onwards (blue). ImageNet features perform much better as fixed feature
extractors than the random baseline (though this gap is much closer for the CheXpert
dataset, Appendix Figure App.5.) Interestingly, there is no performance drop due to
the coadaptation issue [360], with partial ImageNet initialization performing equally to
initialzing with all of the ImageNet weights.

adaptation is naturally learned through training.

267

none conv1 conv2 conv3 conv4 conv5

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-LargeT Freeze Atelectasis

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4 conv5

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-LargeT Freeze Cardiomegaly

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4 conv5

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-LargeT Freeze Consolidation

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4 conv5

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-LargeT Freeze Edema

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4 conv5

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-LargeT Freeze Pleural_Effusion

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4 conv5

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-LargeT Freeze Mean_AUC

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-Tiny Freeze Atelectasis

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-Tiny Freeze Cardiomegaly

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-Tiny Freeze Consolidation

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-Tiny Freeze Edema

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-Tiny Freeze Pleural_Effusion

Random Init

Full Imagenet Init

Partial Imagenet Init

none conv1 conv2 conv3 conv4

Frozen Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Chexpert CBR-Tiny Freeze Mean_AUC

Random Init

Full Imagenet Init

Partial Imagenet Init

Figure App.5: Experiments on freezing lower layers of CBR-LargeT and a CBR-Tiny
model on the CheXpert data. After random or transfer initialization, we keep up to
layer L fixed, and only train layers L + 1 onwards. ImageNet features perform better as
fixed feature extractors than the random baseline for most diseases, but the gap is much
closer than for the Retina data, Figure App.4. We again see that there is no significant
performance drop due to coadaptation challenges.

268

D.6 Additional Results on Feature Independent Benefits and

Weight Transfusions

Figure App.6 visualizes the first layer filters from various initialization schemes.

As shown in the main text, the Mean Var initialization could converge much

faster than the baseline random initialization due to better parameter scaling

transferred from the pre-trained weights. Figure App.7 shows more results on

Retina with various architectures. We find that on smaller models, the effective-

ness of the Mean Var initialization is less very pronounced, likely due to them

being much shallower.

Figure App.8 shows all the five diseases on the CheXpert data for Resnet-50.

Except for Cardiomegaly, we see benefits of the Mean Var initialization scheme

on convergence speed in all other diseases.

D.6.1 Batch Normalization Layers

Batch normalization layers [137] are an essential building block for most modern

network architectures with visual inputs. However, these layers have a slightly

different structure that requires more careful consideration when performing the

Mean Var init. Letting x be a batch of activations, batch norm computes

γ

(
(x − µB)
σB + ε

)
+ β

Here, γ, β are learnable scale, shift parameters, and µB, σB are an accumulated

running mean and variance over the train dataset. Thus, in transfer learning,

269

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0

200

400

600

800

1000

1200
ImageNet Weight Distribution

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0

200

400

600

800

1000

1200
Rand Init Weight Distribution

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0

200

400

600

800

1000

1200
Mean Var Init Weight Distribution

ImageNet Transfer Rand Init Mean Var Init

Figure App.6: Distribution and filter visualization of weights initialized according
to pretrained ImageNet weights, Random Init, and Mean Var Init. The top row is a
histogram of the weight values of the the first layer of the network (Conv 1) when
initialized with these three different schemes. The bottom row shows some of the
filters corresponding to the different initializations. Only the ImageNet Init filters have
pretrained (Gabor-like) structure, as Rand Init and Mean Var weights are iid.

0 20000 40000 60000 80000 100000 120000 140000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

VCSmall

Imagenet Transfer

Random Init

Mean Var

0 20000 40000 60000 80000 100000 120000 140000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

VCSmallHalf

Imagenet Transfer

Random Init

Mean Var

0 20000 40000 60000 80000 100000 120000 140000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

VCSmall5x5

Imagenet Transfer

Random Init

Mean Var

Figure App.7: Comparison of convergence speed for different initialization schemes
on Retina with various model architectures. The three plots present the results for CBR-
LargeW, CBR-Small and CBR-Tiny, respectively.

270

0 20000 40000 60000 80000 100000

Train Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e
st

 A
U

C
Imagenet Transfer

Random Init

Mean Var

(a) Atelectasis

0 20000 40000 60000 80000 100000

Train Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
e
st

 A
U

C

Imagenet Transfer

Random Init

Mean Var

(b) Cardiomegaly

0 20000 40000 60000 80000 100000

Train Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e
st

 A
U

C

Imagenet Transfer

Random Init

Mean Var

(c) Consolidation

0 20000 40000 60000 80000 100000

Train Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e
st

 A
U

C

Imagenet Transfer

Random Init

Mean Var

(d) Edema

0 20000 40000 60000 80000 100000

Train Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e
st

 A
U

C

Imagenet Transfer

Random Init

Mean Var

(e) Pleural Effusion

Figure App.8: Comparison of convergence speed for different initialization
schemes on the CheXpert data with Resnet-50.

µB, σB start off as the mean/variance of the ImageNet data activations, unlikely

to match the medical image statistics. Therefore, for the Mean Var Init, we

initialized all of the batch norm parameters to the identity: γ, σB = 1, β, µB = 0.

We call this the BN Identity Init. Two alternatives are BN ImageNet Mean Var,

resampling the values of all batch norm parameters according to the ImageNet

means and variances, and BN ImageNet Transfer, copying over the batch norm

parameters from ImageNet. We compare these three methods in Figure App.9,

with non-batchnorm layers initialized according to the Mean Var Init. Broadly,

they perform similarly, with BN Identity Init (used by default in other Mean Var

related experiments) performing slightly better. We observe that BN ImageNet

Transfer, where the ImageNet batchnorm parameters are transferred directly to

the medical images, performs the worst.

271

0 20000 40000 60000 80000 100000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C
BN Identity Init

BN Imagenet Transfer

BN Imagenet Mean Var

Figure App.9: Comparing different ways of importing the weights and statistics for
batch normalization layers. The rest of the layers are initialized according to the Mean
Var scheme. The two dashed lines show the convergence of the ImageNet init and the
Random init for references. The lines are averaged over 5 runs.

D.6.2 Mean Var Init vs Using Knowledge of the Full Empirical

ImageNet Weight Distribution

In Figure App.6, we see that while the Mean Var Init might have the same

mean and variance as the ImageNet weight distribution, the two distributions

themselves are quite different from each other. We examined the convergence

speed of initializing with the Mean Var Init vs initializing using knowledge of

the entire empirical distribution of the ImageNet weights.

272

0 20000 40000 60000 80000 100000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

Sampled

Shuffled

Mean Var Init

In particular, we looked at (1) Sampling Init: each weight is drawn iid from the

full empirical distribution of ImageNet weights (2) Shuffled Init: random shuffle

of the pretrained ImageNet weights to form a new initialization. (Note this is

exactly sampling from the empirical distribution without replacement.) The

results are illustrated in Figure D.6.2. Interestingly, Mean Var is very similar in

convergence speed to both of these alternatives. This would suggest that further

improvements in convergence speed might have to come from also modelling

correlations between weights.

D.6.3 Synthetic Gabor Filters

We test mathematically synthetic Gabor filters in place of learned Gabor filters

on ImageNet for its benefits in speeding up the convergence when used as

initialization in the first layer of neural networks. The Gabor filters are generated

with the skimage package, using a code snippet, which is given in full in the

corresponding paper, [254].

273

0 20000 40000 60000 80000 100000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

Resnet50 Weight Transfusion

RandInit, 69069 steps > 0.91AUC

Conv1, 31031 steps > 0.91AUC

Block1, 15215 steps > 0.91AUC

Block2, 8608 steps > 0.91AUC

Block3, 8208 steps > 0.91AUC

Block4, 7407 steps > 0.91AUC

Transfer, 8008 steps > 0.91AUC

0 20000 40000 60000 80000 100000 120000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

CBR-LargeW Weight Transfusion

RandInit, 104104 steps > 0.91AUC

Pool1, 73473 steps > 0.91AUC

Pool2, 50650 steps > 0.91AUC

Pool3, 32432 steps > 0.91AUC

Pool4, 19219 steps > 0.91AUC

Transfer, 19419 steps > 0.91AUC

None (R
and)

Conv1

Block
1

Block
2

Block
3

Block
4

All (
Tra

nsfe
r)

Weight Transfusion Up To Layer

0

10000

20000

30000

40000

50000

60000

70000

80000

Fi
rs

t
T
ra

in
 S

te
p
 w

it
h
 A

U
C

 >
 0

.9
1 Resnet50 Weight Transfusion Convergence

None (R
and)

Pool1
Pool2

Pool3
Pool4

All (
Tra

nsfe
r)

Weight Transfusion Up To Layer

0

20000

40000

60000

80000

100000

120000

Fi
rs

t
T
ra

in
 S

te
p
 w

it
h
 A

U
C

 >
 0

.9
1 CBR-LargeW Weight Transfusion Convergence

Figure App.10: Weight transfusion results on Resnet50 (from main text) and
CBR-LargeW. These broadly show the same results — reusing pretrained
weights for lowest layers give significantly larger speedups. Because CBR-
LargeW is a much smaller model, there is slightly more change when reusing
pretrained weights in high layers, but we still see the same diminishing returns
pattern.

Figure App.12 visualize the synthetic Gabor filters. To ensure fair comparison,

the synthesized Gabor filters are scaled (globally across all the filters with a single

scale parameter) to match the numerical magnitudes of the learned Gabor filters.

274

0 20000 40000 60000 80000 100000

Train Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e
st

 A
U

C

Resnet50 Hybrid Approaches

RandInit, 69069 steps > 0.91AUC

Synthetic Gabor, 25425 steps > 0.91AUC

Slim, 8208 steps > 0.91AUC

Slim Random, 68468 steps > 0.91AUC

Transfer, 8008 steps > 0.91AUC

Figure App.11: Convergence of Slim Resnet50 from random initialization. We
include the convergence of the slim Resnet50 — where layers in Block3, Block4
have half the number of channels, and when we don’t use any pretrained weights.
We see that it is significantly slower than the hybrid approach in the main text.

Figure App.12: Synthetic Gabor filters used to initialize the first layer if neural
networks in some of the experiments in this study. The Gabor filters are generated
as grayscale images and repeated across the RGB channels.

275

APPENDIX E

CHAPTER 7 APPENDIX

E.1 Proofs of Direct Uncertainty Prediction Results

We first prove Theorem 5.

Proof. To show unbiasedness of hdup, we need to show that E[hdup] = E[U(Y)].

But from the tower law (law of total expectation):

E[hdup] = E
[
E
[
U(E[Y|O])

∣∣∣g(O)
]]

= E[U(E[Y|O])]

To prove the biasedness of huvc, first note that

huvc = U(E[Y|g(O)]) = U(E[E[Y|O]|g(O)])

by the conditional independence of Y, g(O) given O. Next, by the fact that U(·) is

concave and Jensen’s inequality,

huvc = U(E[E[Y|O]|g(O)]) ≥ E[U(E[Y|O]|g(O)] = hdup

This is a strict inequality whenever the distribution of posteriors induced by con-

ditioning on g(O) is not a point-mass. Therefore we have that huvc overestimates

the the true uncertainty U(Y). �

For specific U(·), we can compute the bias term by first computing huvc − hdup

and then taking an expectation. For Udisagree, we have

huvc = U(E[Y|g(O)]) = 1 −
∑

l

E[E[Yl|O]|g(O)]2

276

and

hdup = E[U(E[Y|O])|g(O)] = 1 −
∑

l

E[E[Yl|O]2|g(O)]

And so,

huvc − hdup =
∑

l

E[E[Yl|O]2|g(O)] −
∑

l

E[E[Yl|O]|g(O)]2

But this is just

Var

∑
l

E[E[Yl|O]|g(O)]

Taking expectations over values of g(O) gives the bias, i.e.

E
Var

∑
l

E[E[Yl|O]|g(O)]

For Uvar, we have

huvc =
∑

l

l2E[E[Yl|O]|g(O)] −

∑
l

lE[E[Yl|O]|g(O)]

2

and

hdup = E

∑
l

l2E[Yl|O] −

∑
l

lE[Yl|O]

2∣∣∣∣∣∣∣ g(O)

And so huvc − hdup becomes

E

∑

l

lE[Yl|O]

2∣∣∣∣∣∣∣ g(O)

 −
∑

l

lE[E[Yl|O]|g(O)]

2

Which is just

Var

∑
l

l · E[Yl|O]

∣∣∣∣∣∣∣ g(O)

Taking expectations over values of g(O) like before gives the result.

E.2 Mixture of Gaussians Setting

We train a DUP and UVC (Figure 7.1) on a synthetic task where data is gener-

ated from a mixture of Gaussians. All of our settings have uniform mixtures

277

of Gaussians, with the Gaussian mean vectors being drawn from N(0, 1/d) (d

corresponding to the dimension) so that in expectation, each mean vector has

norm 1. The variance is set to be the identity. Like before, we set x = g(o) = |o|. We

draw five labels for each x from the posterior distribution over Gaussian centers

given x, and apply Udisagree() to the empirical histogram. As with the medical

imaging application, we threshold these uncertainty scores (with threshold 0.5)

to give a binary low uncertainty/high uncertainty label, which we use to train

our DUPs and UVCs. Results are given in percentage AUC to account for some

settings having unbalanced classes.

We train fully connected networks with two hidden layers of width 300 on

this task, using the SGD with momentum optimizer and an initial learning rate

of 0.01.

E.3 SVHN and CIFAR-10 Setting

In Section 7.2.2, we train DUP and UVC models to predict label disagreement on

a synthetic task on SVHN and CIFAR-10. The task setup is as follows: for each

image in SVHN/CIFAR-10, we decide on a variance (0, 1, 2, 3) for a Gaussian

filter that is applied to the image. Three labels are then drawn for the image from

a noisy distribution over labels, with the label noise distribution depending on

the variance of the Gaussian filter. Specifically, for a Gaussian filter with variance

0, the noise distribution is just a point mass on the true label. For a Gaussian

filter with variance 1, the three labels are drawn from a distribution with 0.02

mass on four incorrect labels, and the remaining 0.92 mass on the correct label.

278

For variance equal to 2, the labels are drawn from a distribution with 0.08 mass

on four different labels, and remaining mass on the true label. For variance 3,

this mass is now 0.12 on the incorrect labels.

A simple conv network, with 3x3 kernels and channels 64 − −128 − −256,

followed by fully connected layers of width 1000 and 200 (each with batch

normalization) is trained on this dataset, with the UVC model trained on the

empirical histogram, and the DUP model trained on a binary agree/disagree

target. (Disagreement threshold is if at least one label disagrees.) We find that

DUP outperforms UVC on both SVHN and CIFAR-10.

Learned Features Interestingly, we also observe that the features learned by

the DUP and UVC models are different to each other. We apply saliency maps,

specifically SmoothGrad [294] and IntGrad [302] to study the features that DUP

and UVC pay attention to in the input image.

E.4 Details of DUP in the Medical Domain

As described in Section 7.4, to train DUP models, we threshold the scores given

by applying Udisagree,Uvar to the data (xi, p̂i). Preliminary experiments in trying to

directly regress onto the raw scores using mean-squared error performed poorly.

We threshold the scores as follows. For Uvar we thresholded at approximately

2/9, the variance when three doctors have more than an ’off by one’ disagreement:

more than a single disagreement, or a single grade disagreement.

279

0 5 10 15 20 25 30

0

5

10

15

20

25

30

SmoothGrad SmoothGrad

0 5 10 15 20 25 30

0

5

10

15

20

25

30

SmoothGrad SmoothGrad

0 5 10 15 20 25 30

0

5

10

15

20

25

30

SmoothGrad SmoothGrad

0 5 10 15 20 25 30

0

5

10

15

20

25

30

SmoothGrad SmoothGrad

Figure App.1: Saliency maps for DUP and UVC models on the SVHN/CIFAR-10
disagreement task. The plot shows two images from the blurred CIFAR-10 dataset and
two images from the blurred SVHN dataset. The second column is SmoothGrad applied
to the UVC model, and the third SmoothGrad applied to the DUP model. We observe
that the DUP and UVC models appear to be paying attention to different features of the
dataset.

280

Model Type Ttest AUC Majority Median Majority= 1

Disagree Soft Targets 76.3% 79.0% 78.7% 81.6%
Disagree-P 78.1% 81.0% 80.8% 84.6%
Disagree-PC 78.1% 80.9% 80.9% 84.5%

Model Type Ttest AUC Median= 1 Referable

Disagree Soft Targets 76.3% 79.0% 84.7%
Disagree-P 78.1% 81.9% 86.2%
Disagree-PC 78.1% 81.8% 86.2%

Table App.1: Using soft targets for disagreement prediction does not help in perfor-
mance (AUC). Holdout AUC column corresponds to Disagreement Prediction Perfor-
mance in Table 7.3, other columns refer to Table 7.4 in main text.

For Udisagree, where only the number of disagreements counts, we thresholded

at 0.3, to prioritize being sensitive enough to disagreement cases and having

more than 20% of the data marked as high disagreement. We also experimented

with using soft targets for disagreement classification, but the results (Table

App.1) showed that this was less effective than than having the binary 0/1 scores,

likely because this makes the classification problem more like a regression.

Our model consists of an Inception-v3 base, with the ImageNet head removed

and a small (2 hidden layer, 300 hidden units) fully connected neural network

using Inception-v3 PreLogits to perform DUP. The full Inception-v3 network is

trained with a batch size of 8 and learning rate 0.001 with the Adam optimizer.

For training only the small neural network, we use the SGD with momentum

optimizer, a batch size of 32 and learning rate of 0.01.

Prelogits, Calibration and Regularization Our training data for DUP mod-

els, T (var)
train ,T

(disagree)
train , only consists of xi with more than one label, and is too small

to effectively train an Inception sized model end to end. Therefore, we use the

prelogit embeddings of xi from a pretrained DR classification model (Histogram-

281

Task Model Type Performance (AUC)

Variance Prediction Variance-E2E-2H 72.7%

Variance Prediction Variance-LR 72.4%
Disagreement Prediction Disagree-LR 75.9%

Table App.2: Additional results from table 7.3.

E2E), and training smaller models on top of these embeddings. We do this both

for the baseline, getting the Histogram-PC model, as well as the DUP models,

Variance-PRC and Disagree-PC.

The C suffix of all of these models corresponds to calibration on the logits.

Following the findings of [103], we apply temperature scaling on the logits: we

set the predictions of the model to be f (z/T) where f is the softmax function,

applied pointwise, and z are the logits. We initialize T to 1, and then split e.g.

T (disagree)
train into a T

′(disagree)
train and a T

′(disagree)
valid , with 10% of the data in the validation set.

We train as normal on T
′(disagree)
train , with T fixed at 1, and then train on T

′(disagree)
valid , by

only varying the temperature T , and holding all other parameters fixed.

The use of Prelogit embeddings and Calibration gives the strongest perform-

ing baseline UVC and DUPs: Histogram-PC, Variance-PRC and Disagree-PC.

For the Variance DUP, an additional regularization term is added to the loss by

having a separate regressing on the raw variance value.

Additional Model: Variance-E2E We tried a variant of Variance-E2E,

Variance-E2E-2H, which has one head for predicting variance and the other

for classifying, to enable usage of all the data. We then evaluate the variance

head on Ttest, but in fact noticed a small drop in performance, Table App.2.

282

Do we need the Prelogit embeddings? We tried seeing if we could match

performance by training on pretrained classifier logits instead of the prelogit

embeddings. Despite controlling for parameter difference by experimenting with

more hidden layers, we found we were unable to match performance from the

prelogit layer, Table App.2, compare to Table 7.3. This demonstrates that some

information is lost between the prelogit and logit layers.

E.5 Additional Results: Entropy, Finite Sample Behavior and

Convergence Analysis

We performed additional experiments to further understand the properties of

DUP and UVC models. For these experiments, we compare a representative

DUP model, Disagree-P, to a representative UVC model, Histogram-PC.

Theorem 5 states that DUP offers benefits over UVC for concave target uncer-

tainty functions. This is a natural property for measures of spread, simply stating

that the measure of spread increases with averaging (probability distributions).

In the main text, we concentrate on two such specific uncertainty functions,

Uvar and Udisagree, which are particularly suited to the domain. However, other

standard uncertainty functions, such as entropy, are also concave. We test the

performance of DUP (Disagree-P) and UVC (Histogram-PC) with Uentropy as the

target function.

The results are shown in Table App.3, where we again see that DUP outper-

forms UVC.

283

Task Model Type Performance (AUC)

Entropy Prediction UVC Histogram-PC 75.5%
Entropy Prediction DUP Disagree-P 77.2%

Table App.3: DUP and UVC models trained with entropy as a target function.
Again, we see that the DUP model outperforms the UVC model.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data Sampled

0.760

0.765

0.770

0.775

0.780

0.785

A
U

C

Performance with Varying
 Amounts of Training Data

DUP

UVC

0% 20% 40% 60% 80% 100%
Percentage Train Time

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

A
U

C

Performance through Training

DUP

UVC

Figure App.2: DUP and UVC performance during training and when varying train
data size. We study DUP (Disagree-P) and UVC (Histogram-PC) performance for
varying amounts of training data. We find that the gap in performance is robust to
variations in dataset size. For more than 30% of the data, performance of DUP and UVC
remains relatively constant, supporting the applicability of Theorem 5 in the finite data
setting. The right plot looks at performance through training, with the gap appearing
rapidly early in training, and slowly widening.

We also study how model performance is impacted by different training set

sizes (similar to the analysis in [40]). We subsample different amounts of the

original training set T (disagree)
train , and train DUP and UVC models on this subset. The

results over 5 repeats of different subsamples and optimization runs are shown

in Figure App.2.

We see that the performance gap between DUP and UVC is robust to train

data size differences. Additionally, when ≥ 30% of the training data is used, DUP

and UVC performance remains relatively constant. This supports carrying over

the results of Theorem 5) and the full joint distribution f (o, y) to the finite data

setting.

284

We also study convergence of DUP and UVC models. We find that the

performance gap between DUP and UVC manifests very early in training (Figure

App.2, right plot), and continues to gradually widen through training.

E.6 Background on the Wasserstein Distance

Given two probability distributions f , g, and letting Π(f , g) be all product prob-

ability distributions with marginals f , g, the Wasserstein distance between p, q

is

|| f − g||w = inf
π∈Π(f ,g)

E(r,t)∼π [d(r, t)]

where d(,) is some metric. This distance has connections to optimal transport,

and corresponds to the minimum cost (with respect to d(,)) of moving the mass

in distribution f so that it is matches the mass in distribution g. We can represent

the amount of mass to move from r to t with π(r, t). To be consistent with the mass

at the start, f (r), and the mass at the end g(t) we must have that
∫

t′
π(r, t′) = f (r)

and
∫

r′
π(r′, t) = g(t).

The result in the main text follows from the following theorem:

Theorem 8. If f , g are (discrete) probability distributions and g is a point mass distribu-

tion at t0, then π ∈ Π(f , g) is uniquely defined as:

π(r, t) =

0 if t , t0

f(r) if t = t0

Proof. The proof is direct: for t , t0, we must have
∫

r′
π(r′, t) = g(t) = 0, and so∫

t′
π(r, t′) = π(r, t0) = f (r). �

285

We consider three different distances d(,):

1 Absolute Value d(r, t) = |r − t|. This follows an interpretation in which the

grades are equally spaced, so that all successive grade differences have the

same weight.

2 2-Wasserstein Distance d(r, t) = (r − t)2, and, to make into a metric

|| f − g||w =
(
E(r,t)∼π [d(r, t)]

)1/2

This adds a higher penalty for larger grade differences.

3 Binary Disagreement We set d(r, t) = 0 if r = t and 1 otherwise.

286

APPENDIX F

CHAPTER 8 APPENDIX

F.1 Training Data and Models Details

Our training dataset consists of fundus photographs with labels corresponding

to individual doctor grades. There are 5 possible DR grades and hence 5 possible

class labels. A subset of this data has fundus photographs with more than one

doctor grade, corresponding to multiple doctors individually and independently

deciding on the grade for the image. The label for these images is not a one-hot

class label but the empirical distribution of grades. For example, if an image i

has grades {2, 3, 3}, then its label would be [0, 1./3, 2./3, 0, 0].

On this data, we train a convolutional neural network, an Inception-v3 model

with weights pretrained from ImageNet and a new five class classification head.

We train with the Adam optimizer [154] and an initial learning rate of 0.005.

To better calibrate the model, we retrain the very top of the network (from the

PreLogits layer) on just the data with two or more doctor grades.

Training Error Probability Prediction Models For Figures 8.4, 8.5 and 8.6, we

use separate error probability prediction algorithms to predict the values of

Pr [Hi] and Pr [Mi]. The setup for predicting Pr [Mi] is as follows: after training

the main convolutional neural network on the train dataset, we train a small

fully connected deep neural network to take the prelogit embeddings of a train

image xi, and predict whether or not the main convolutional neural network

was correct on that image. The label for the image is binary: agree/disagree on

287

whether the mass m(xi) put on referable by the convolutional neural network

thresholded at 0.5 equals the mass on referable by the human doctor grades,

again thresholded at 0.5.

The setup for training Pr [Hi] builds off of [?]. First, we only select cases

for which we have at least two doctor grades. For these, we take the image

embedding from the Prelogit layer of the large diagnostic convolutional neural

network as input, and the label as a binary target. This label is defined as

follows: we split the available doctor grades into two evenly sized sets A and

B. We aggregate all the grades in A into a single referable/non-referable grade

by averaging and thresholding at 0.5, and do the same for the grades in B. If

these two aggregated grades agree, we label the image with 0 (agreement, low

doctor error probability), if not, we label with 1 (disagreement, high doctor error

probability.)

F.2 Computing Pr [Mi]

In Section 8.3.1, we overviewed the method used to define a well calibrated error

probability for the output of the convolutional neural network. In Algorithm ,

we give a step-by-step overview of the implementation of this method. In our

experiments, we set C = 2000.

288

Algorithm 1 Model Error Probability Calibration
1: Erri = 0 for i in instances.
2: for (r = 0; r < C; r++) do . C is a sufficiently large constant.
3: R = 0
4: for i in instances do . Sample a doctor grade and count number of

referables.
5: Sample doctor grade h(i)

6: if (h(i) ≥ 3) then
7: R← R + 1
8: end if
9: end for

10: Rank instances i from highest to lowest m(xi)
11: AR = {i : rank(i) ≤ R}
12: for i in instances do . Assign binary grades to instances. Top R

referable.
13: if (i ∈ AR) then
14: mi ← 1
15: else
16: mi ← 0
17: end if
18: Erri ← Erri + |mi − ai| . ai is the adjudicated grade
19: end for
20: end for
21: return Pr [Mi] = Erri/C . Error probability by averaging over number of

repetitions.

F.3 Triage and Allocation Algorithm

When using triage to reallocate human effort, we first order the instances by their

triage scores, and then fully automate the first αN of them. On the remainder

(1 − α)N images, we allocate the budget of cN human doctor grades we have

available. To allocate this set of cN grades, we use the equal coverage protocol:

each of the remaining (1 − α)N cases gets cN/((1 − α)N) grades. If this is a

non-integer amount, with r spare grades, the r cases identified as the hardest

(according to the triage scores) get an additional grade. We then compute the

289

final binary decision by taking the mean grade (for each case) and thresholding

by 0.5 (the majority vote.)

F.3.1 Results on other Thresholds

As described in Section 8.2.4, at evaluation, for an instance with multiple grades

we aggregate all the scores by taking the mean and thresholding. In the main

text, we pick this threshold to be 0.5, corresponding to the majority vote of

all the grades. In Figure App.1, we show the results corresponding to Figure

8.4 in the main text, but for when we take the thresholds to be 0.3 (top row)

and 0.4 (bottom row). We see that the qualitative conclusions remain the same

– combining human and algorithmic effort beats the full allocation and equal

coverage protocols for both triage by the error prediction models and triage by

the ground truth. We also see the same significant gap between ground truth

and triage by error predictions.

Note that this choice of threshold affects the choice of qR, which is chosen so

that the number of cases marked as referable by the model matches the number

of cases marked as referable by the aggregated and thresholded grade of the

human doctors, and could potentially affect the results of Figure 8.6. However,

as shown in Figure App.2, the choice of aggregation threshold does not affect the

identification of zero error subsets.

290

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Error Model Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Ground Truth Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.03

0.04

0.05

0.06

0.07

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Error Model Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.03

0.04

0.05

0.06

0.07

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Ground Truth Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Error Model Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Ground Truth Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.03

0.04

0.05

0.06

0.07

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Error Model Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.03

0.04

0.05

0.06

0.07

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Ground Truth Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

Figure App.1: Triage and human expert effort reallocation for different thresholds:
0.3 top row, 0.4 bottom row. We plot the same results as in Figure 8.4 in the main text,
but for different thresholds — 0.3, 0.4 — for aggregation.

291

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cases Triaged

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
u
m

u
la

ti
v
e
 E

rr
o
r

Cumulative Error with
 Algorithm Uncertainty Triage

Cumulative Triaged Model Error

Total Average Model Error

Total Average Doctor Error

35% Triaged with Zero Error

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cases Triaged

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
u
m

u
la

ti
v
e
 E

rr
o
r

Cumulative Error with
 Predicted Error Triage

Cumulative Triaged Model Error

Total Average Model Error

Total Average Doctor Error

44% Triaged with Zero Error

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cases Triaged

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
u
m

u
la

ti
v
e
 E

rr
o
r

Cumulative Error with
 Algorithm Uncertainty Triage

Cumulative Triaged Model Error

Total Average Model Error

Total Average Doctor Error

35% Triaged with Zero Error

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cases Triaged

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
u
m

u
la

ti
v
e
 E

rr
o
r

Cumulative Error with
 Predicted Error Triage

Cumulative Triaged Model Error

Total Average Model Error

Total Average Doctor Error

44% Triaged with Zero Error

Figure App.2: Triage for Zero Error subsets with thresholds 0.3 (top) and 0.4 (bottom)
for aggregation. The size of the zero error subsets remain the same, showing that the
choice of threshold does not affect the identification of these subsets.

F.4 Triage and Human Effort Reallocation with Model Grades

The triage process for effort reallocation – Figures 8.4, App.5 – assumes that the

algorithm decision is not available for the (1 − α)N cases that are not automated.

This may be the situation if computing an algorithm decision is expensive (less

likely) or (more likely) the algorithm decision is purposefully not shown in cases

where it is unsure, so as not to bias the human doctors. However, another equally

likely scenario is that the algorithm decision is also available ‘for free’ for the

(1 − α)N cases that are not fully automated. In Figure App.3, we show the effort

reallocation results from triaging if the model grades were available for all the

cases (compare to Figure 8.4 in the main text). We observe that all of the main

conclusions – the optimal performance is through a combination of automation

292

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Error Model Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.75

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Ground Truth Triage
 Effort Reallocation Average f1 Score

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.03

0.04

0.05

0.06

0.07

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Error Model Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

No Model Grades

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.03

0.04

0.05

0.06

0.07

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Ground Truth Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

No Model Grades

Figure App.3: Effort reallocation results with the algorithm’s grade being available
for all cases. Here we assume that the algorithm’s grade is available for all the patient
cases. We see that the same qualitative conclusions hold – a mix of automation and
human effort outperforming the pure algorithm/human expert.

and human effort, which beats both full automation and the different equal

coverage baselines.

F.5 Results on Additional Holdout Dataset

The results in the main text are on the adjudicated evaluation dataset, which,

aside from multiple independent grades by individual doctors, also have a

consensus score, the adjudicated grade, which is used as a proxy for ground

truth. To further validate our result, we use an additional holdout set which

doesn’t have an adjudicated grade, but does have many individual doctor grades.

For each instance i, we use half of its grades to compute a proxy ground truth

293

1.0 0.5 0.0 0.5 1.0
(D Err - M Err)

10-4

10-3

10-2

10-1

100

P
ro

p
o
rt

io
n
 o

f
Im

a
g
e
s

Lo
g
 S

ca
le

Algorithm and Doctor Error Difference
 Log Scale

D Err = M Err

D Err < M Err

D Err > M Err

1.0 0.5 0.0 0.5 1.0
(D Err - M Err)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ro

p
o
rt

io
n
 o

f
Im

a
g
e
s

Algorithm and Doctor Error Difference

D Err < M Err

D Err > M Err

Figure App.4: Histogram plot of Pr [Hi] − Pr [Mi] for instances i on the additional
holdout evaluation dataset. Compare to Figure 8.3 in the main text. We see a diversity
of values across different instances.

grade, by aggregating and then thresholding the doctor grades. The other half

of the grades are used in effort reallocation and evaluating the equal coverage

baseline. The individual doctor grades in this dataset are slightly noiser (higher

disagreement rates) than in the adjudicated evaluation dataset. Nevertheless this

additional evaluation also supports all of the main findings.

The results on this dataset are qualitatively identical to those with the adjudi-

cated data. Again, we see that there is a diverse spread of Pr [Hi] − Pr [Mi] across

instances, with around 10% of the instances having the human experts perform

better (Figure App.4).

This diversity continues to be predictable, and we observe that triaging (by

the error prediction models and by the ground truth) to combine human expert

effort and and the algorithm’s decisions, Figure App.5, also demonstrates that

this combination works better than both full automation and equal coverage –

the same conclusions seen in Figure 8.4 in the main text. Like the main text, we

see a gap between triaging by the error prediction models and the ground truth

score.

294

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Error Model Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.80

0.85

0.90

A
v
e
ra

g
e
 F

1
 S

co
re

Ground Truth Triage
 Effort Reallocation Average F1 Score

N grades

2N grades

3N grades

Full Automation

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.04

0.06

0.08

0.10

0.12

0.14

0.16

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Error Model Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

0.0 0.2 0.4 0.6 0.8
Proportion of Cases Triaged

0.04

0.06

0.08

0.10

0.12

0.14

0.16

T
o
ta

l
A

v
e
ra

g
e
 E

rr
o
r

Ground Truth Triage
 Effort Reallocation Average Error

N grades

2N grades

3N grades

Full Automation

Figure App.5: Triaging to combine human effort and algorithm decisions outper-
forms full automation and the equal coverage protocols, compare to Figure 8.4 in the
main text. We perform the same experiments as in Figure 8.4 in the main text, using the
aggregated doctor grades as the ground truth instead of the adjudicated grade.

Finally, we also test to see if triaging can help find sets of zero error, like

in Section F.5 and Figure 8.6. We find that this is indeed the case, though the

fractions are slightly smaller with this holdout dataset, likely because the labels

are noisier than on the adjudicated evaluation dataset.

We also see that the fraction of zero error examples triaged is slightly lower

with the separate error prediction model (Figure App.6 right) than triaging by

model uncertainty (Figure App.6 left). The reason for this becomes apparent

after further inspection: the results of Figure App.6 are averaged over three inde-

295

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cases Triaged

0.00

0.05

0.10

0.15

C
u
m

u
la

ti
v
e
 E

rr
o
r

Cumulative Error with
 Algorithm Uncertainty Triage

Cumulative Triaged Model Error

Total Average Model Error

Total Average Doctor Error

20% Two Errors

16% Triaged with Zero Error

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cases Triaged

0.00

0.05

0.10

0.15

C
u
m

u
la

ti
v
e
 E

rr
o
r

Cumulative Error with
 Predicted Error Triage

Cumulative Triaged Model Error

Total Average Model Error

Total Average Doctor Error

24% Two Errors

10% Triaged with Zero Error

Figure App.6: Proportion of data with zero errors when triaging. Compare to Figure
8.6 in the main text. The proportion of the dataset found with zero errors is slightly lower,
likely because the labels are noisier, and total error is much higher (10% compared to 4%
in the main text.) Unlike the main text, we see that triaging by algorithmic uncertainty,
left pane, seems to perform better than triaging with a separate model. Upon closer
inspection, we find that this is because one repetition of the separate error model makes
two errors earlier on, and accounting for this (green dotted lines) shows that the separate
error model performs comparably/slightly better.

pendent repetitions of training a main diagnostic model, and a corresponding

separate error model. We find that one of the three repetitions of the separate

error model makes two errors – at 10% of the way through the data, it triages two

examples that are errors.This causes the percentage with zero error to drop from

24% to 10%. If we account for these two errors, we see that in fact triaging by the

error prediction model is doing comparably to triaging by algorithm uncertainty,

where allowing two errors gets to 20% of the data.

296

BIBLIOGRAPHY

[1] AAO. International Clinical Diabetic Retinopathy Disease Severity Scale Detailed
Table. American Academy of Ophthalmology, 2002.

[2] Waleed Abdulla. Splash of Color: Instance Segmenta-
tion with Mask R-CNN and TensorFlow, 2018. https://
engineering.matterport.com/splash-of-color-instance-
segmentation-with-mask-r-cnn-and-tensorflow-
7c761e238b46.

[3] Michael David Abràmoff, Yiyue Lou, Ali Erginay, Warren Clarida, Ryan
Amelon, James C Folk, and Meindert Niemeijer. Improved automated
detection of diabetic retinopathy on a publicly available dataset through
integration of deep learning. Investigative ophthalmology & visual science,
57(13):5200–5206, 2016.

[4] Lisa S. Abrams, Ingrid U Scott, George L. Spaeth, Harry A. Quigley,
and Rohit Varma. Agreement among optometrists, ophthalmologists,
and residents in evaluating the optic disc for glaucoma. Ophthalmology,
101(10):1662–1667, 1994.

[5] Roee Aharoni, Melvin Johnson, and Orhan Firat. Massively multilingual
neural machine translation. arXiv preprint arXiv:1903.00089, 2019.

[6] Hasseb Ahsan. Diabetic retinopathy – biomolecules and multiple patho-
physiology. Diabetes and Metabolic Syndrome: Clincal Research and Review,
pages 51–54, 2015.

[7] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers
using linear classifier probes. arXiv preprint arXiv:1610.01644, 2016.

[8] Jay Alammar. The Illustrated Transformer, 2018. http://
jalammar.github.io/illustrated-transformer/.

[9] Mohsan Alvi, Andrew Zisserman, and Christoffer Nellåker. Turning a
blind eye: Explicit removal of biases and variation from deep neural net-
work embeddings. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 0–0, 2018.

[10] Marios Anthimopoulos, Stergios Christodoulidis, Lukas Ebner, Andreas
Christe, and Stavroula Mougiakakou. Lung pattern classification for in-

297

https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

terstitial lung diseases using a deep convolutional neural network. IEEE
transactions on medical imaging, 35(5):1207–1216, 2016.

[11] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train
your MAML. arXiv preprint arXiv:1810.09502, 2018.

[12] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning
of deep convolutional neural networks. J. Emerg. Technol. Comput. Syst.,
13(3):32:1–32:18, February 2017.

[13] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

[14] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning
representations by maximizing mutual information across views. arXiv
preprint arXiv:1906.00910, 2019.

[15] Marcus A Badgeley, John R Zech, Luke Oakden-Rayner, Benjamin S Glicks-
berg, Manway Liu, William Gale, Michael V McConnell, Bethany Percha,
Thomas M Snyder, and Joel T Dudley. Deep learning predicts hip fracture
using confounding patient and healthcare variables. npj Digital Medicine,
2(1):31, 2019.

[16] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. IEEE
transactions on pattern analysis and machine intelligence, 39(12):2481–2495,
2017.

[17] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[18] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel,
and Yoshua Bengio. End-to-end attention-based large vocabulary speech
recognition. In 2016 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pages 4945–4949. IEEE, 2016.

[19] Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag, and
Adrian V Dalca. An unsupervised learning model for deformable medical
image registration. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 9252–9260, 2018.

298

[20] Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag, and
Adrian V Dalca. Voxelmorph: a learning framework for deformable medi-
cal image registration. IEEE transactions on medical imaging, 2019.

[21] Yujia Bao, Menghua Wu, Shiyu Chang, and Regina Barzilay. Few-shot text
classification with distributional signatures. arXiv preprint arXiv:1908.06039,
2019.

[22] Maurice S. Bartlett. The statistical significance of canonical correlations. In
Biometrika, volume 32, pages 29 – 37, 1941.

[23] Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-
supervision. arXiv preprint arXiv:1901.11365, 2019.

[24] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende,
et al. Interaction networks for learning about objects, relations and physics.
In Advances in neural information processing systems, pages 4502–4510, 2016.

[25] Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim
Dalvi, and James Glass. Identifying and controlling important neurons in
neural machine translation. arXiv preprint arXiv:1811.01157, 2018.

[26] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Network dissection: Quantifying interpretability of deep visual represen-
tations. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6541–6549, 2017.

[27] Iz Beltagy, Arman Cohan, and Kyle Lo. Scibert: Pretrained contextualized
embeddings for scientific text. arXiv preprint arXiv:1903.10676, 2019.

[28] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital
Oliver, and Colin Raffel. Mixmatch: A holistic approach to semi-supervised
learning. arXiv preprint arXiv:1905.02249, 2019.

[29] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi.
Meta-learning with differentiable closed-form solvers. arXiv preprint
arXiv:1805.08136, 2018.

[30] Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Bernhard
Firner, Larry Jackel, Urs Muller, and Karol Zieba. Visualbackprop: visu-
alizing cnns for autonomous driving. arXiv preprint arXiv:1611.05418, 2,
2016.

299

[31] Xavier Bresson and Thomas Laurent. A two-step graph convolutional
decoder for molecule generation. arXiv preprint arXiv:1906.03412, 2019.

[32] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale
gan training for high fidelity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.

[33] Carrie J Cai, Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel
Smilkov, Martin Wattenberg, Fernanda Viegas, Greg S Corrado, Martin C
Stumpe, et al. Human-centered tools for coping with imperfect algorithms
during medical decision-making. arXiv preprint arXiv:1902.02960, 2019.

[34] Renzhi Cao, Colton Freitas, Leong Chan, Miao Sun, Haiqing Jiang, and
Zhangxin Chen. Prolango: protein function prediction using neural
machine translation based on a recurrent neural network. Molecules,
22(10):1732, 2017.

[35] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
OpenPose: realtime multi-person 2D pose estimation using Part Affinity
Fields. In arXiv preprint arXiv:1812.08008, 2018.

[36] Brandon Carter, Jonas Mueller, Siddhartha Jain, and David Gifford. What
made you do this? understanding black-box decisions with sufficient input
subsets. arXiv preprint arXiv:1810.03805, 2018.

[37] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris
Olah. Activation atlas. Distill, 2019. https://distill.pub/2019/activation-
atlas.

[38] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Ev-
erybody dance now. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5933–5942, 2019.

[39] Danqi Chen and Christopher Manning. A fast and accurate dependency
parser using neural networks. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pages 740–750,
2014.

[40] Irene Chen, Fredrik D Johansson, and David Sontag. Why is my classifier
discriminatory? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 3543–3554. Curran Associates, Inc., 2018.

300

[41] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations.
arXiv preprint arXiv:2002.05709, 2020.

[42] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. On sampling strategies
for neural network-based collaborative filtering. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 767–776, 2017.

[43] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and
Jia-Bin Huang. A closer look at few-shot classification. arXiv preprint
arXiv:1904.04232, 2019.

[44] Yuhua Chen, Yibin Xie, Zhengwei Zhou, Feng Shi, Anthony G
Christodoulou, and Debiao Li. Brain mri super resolution using 3d deep
densely connected neural networks. In 2018 IEEE 15th International Sympo-
sium on Biomedical Imaging (ISBI 2018), pages 739–742. IEEE, 2018.

[45] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho,
and Yoshua Bengio. Attention-based models for speech recognition. In
Advances in neural information processing systems, pages 577–585, 2015.

[46] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and
Olaf Ronneberger. 3d u-net: learning dense volumetric segmentation from
sparse annotation. In International conference on medical image computing and
computer-assisted intervention, pages 424–432. Springer, 2016.

[47] Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc V
Le. Semi-supervised sequence modeling with cross-view training. arXiv
preprint arXiv:1809.08370, 2018.

[48] Taco Cohen and Max Welling. Group equivariant convolutional networks.
In International conference on machine learning, pages 2990–2999, 2016.

[49] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical
cnns. arXiv preprint arXiv:1801.10130, 2018.

[50] Peter Corbett and John Boyle. Improving the learning of chemical-protein
interactions from literature using transfer learning and specialized word
embeddings. Database, 2018, 2018.

[51] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaug-

301

ment: Practical data augmentation with no separate search. arXiv preprint
arXiv:1909.13719, 2019.

[52] Adrian Dalca, Marianne Rakic, John Guttag, and Mert Sabuncu. Learn-
ing conditional deformable templates with convolutional networks. In
Advances in neural information processing systems, pages 804–816, 2019.

[53] Thomas M Daniel. Toman’s tuberculosis. Case detection, treatment and moni-
toring: questions and answers. ASTMH, 2004.

[54] Yann Dauphin. mixup: Beyond Empirical Risk Minimization Image, 2017.
https://www.dauphin.io/.

[55] P. Dawid, A. M. Skene, A. P. Dawidt, and A. M. Skene. Maximum likelihood
estimation of observer error-rates using the em algorithm. Applied Statistics,
pages 20–28, 1979.

[56] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model
for small molecular graphs. arXiv preprint arXiv:1805.11973, 2018.

[57] Jeffrey De Fauw, Joseph R Ledsam, Bernardino Romera-Paredes, Stanislav
Nikolov, Nenad Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot,
Brendan O’Donoghue, Daniel Visentin, et al. Clinically applicable deep
learning for diagnosis and referral in retinal disease. Nature medicine,
24(9):1342, 2018.

[58] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[59] Cem M Deniz, Siyuan Xiang, R Spencer Hallyburton, Arakua Welbeck,
James S Babb, Stephen Honig, Kyunghyun Cho, and Gregory Chang. Seg-
mentation of the proximal femur from mr images using deep convolutional
neural networks. Scientific reports, 8(1):16485, 2018.

[60] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[61] Terrance DeVries and Graham W Taylor. Improved regularization of
convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552,
2017.

302

https://www.dauphin.io/

[62] Yiming Ding, Jae Ho Sohn, Michael G Kawczynski, Hari Trivedi, Roy Har-
nish, Nathaniel W Jenkins, Dmytro Lituiev, Timothy P Copeland, Mariam S
Aboian, Carina Mari Aparici, et al. A deep learning model to predict a
diagnosis of alzheimer disease by using 18f-fdg pet of the brain. Radiology,
290(2):456–464, 2018.

[63] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear
independent components estimation. arXiv preprint arXiv:1410.8516, 2014.

[64] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using real nvp. arXiv preprint arXiv:1605.08803, 2016.

[65] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual
representation learning by context prediction. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1422–1430, 2015.

[66] Jeff Donahue and Karen Simonyan. Large scale adversarial representation
learning. In Advances in Neural Information Processing Systems, pages 10541–
10551, 2019.

[67] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image
super-resolution using deep convolutional networks. IEEE transactions on
pattern analysis and machine intelligence, 38(2):295–307, 2015.

[68] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and
Thomas Brox. Discriminative unsupervised feature learning with convolu-
tional neural networks. In Advances in neural information processing systems,
pages 766–774, 2014.

[69] Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural
network for skeleton based action recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1110–1118, 2015.

[70] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolu-
tional networks on graphs for learning molecular fingerprints. In Advances
in neural information processing systems, pages 2224–2232, 2015.

[71] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understand-
ing back-translation at scale. arXiv preprint arXiv:1808.09381, 2018.

[72] Joann G Elmore, Gary M Longton, Patricia A Carney, Berta M Geller, Tracy

303

Onega, Anna NA Tosteson, Heidi D Nelson, Margaret S Pepe, Kimberly H
Allison, Stuart J Schnitt, et al. Diagnostic concordance among pathologists
interpreting breast biopsy specimens. Jama, 313(11):1122–1132, 2015.

[73] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter,
Helen M Blau, and Sebastian Thrun. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542(7639):115, 2017.

[74] Linjing Fang, Fred Monroe, Sammy Weiser Novak, Lyndsey Kirk, Cara R
Schiavon, B Yu Seungyoon, Tong Zhang, Melissa Wu, Kyle Kastner,
Yoshiyuki Kubota, et al. Deep learning-based point-scanning super-
resolution imaging. bioRxiv, page 740548, 2019.

[75] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet
Kohli. PerforatedCNNs: Acceleration through elimination of redundant
convolutions. In D D Lee, M Sugiyama, U V Luxburg, I Guyon, and
R Garnett, editors, Advances in Neural Information Processing Systems 29,
pages 947–955. Curran Associates, Inc., 2016.

[76] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1126–1135.
JMLR. org, 2017.

[77] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning
for physical interaction through video prediction. In Advances in neural
information processing systems, pages 64–72, 2016.

[78] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep rep-
resentations and gradient descent can approximate any learning algorithm.
arXiv preprint arXiv:1710.11622, 2017.

[79] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic
meta-learning. In Advances in Neural Information Processing Systems, pages
9516–9527, 2018.

[80] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson.
Generalizing convolutional neural networks for equivariance to lie groups
on arbitrary continuous data. arXiv preprint arXiv:2002.12880, 2020.

[81] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black
boxes by meaningful perturbation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3429–3437, 2017.

304

[82] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface
prediction using graph convolutional networks. In Advances in Neural
Information Processing Systems, pages 6530–6539, 2017.

[83] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Train-
ing pruned neural networks. CoRR, abs/1803.03635, 2018.

[84] Ferenc Galkó and Carsten Eickhoff. Biomedical question answering via
weighted neural network passage retrieval. In European Conference on
Information Retrieval, pages 523–528. Springer, 2018.

[85] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation
by backpropagation. arXiv preprint arXiv:1409.7495, 2014.

[86] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. The Journal of Machine
Learning Research, 17(1):2096–2030, 2016.

[87] Xavier Gastaldi. Shake-shake regularization. arXiv preprint
arXiv:1705.07485, 2017.

[88] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style
transfer using convolutional neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2414–2423, 2016.

[89] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge,
Felix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased
towards texture; increasing shape bias improves accuracy and robustness.
In ICLR, 2019.

[90] Amirata Ghorbani, Vivek Natarajan, David Coz, and Yuan Liu. Dermgan:
Synthetic generation of clinical skin images with pathology. arXiv preprint
arXiv:1911.08716, 2019.

[91] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised
representation learning by predicting image rotations. arXiv preprint
arXiv:1803.07728, 2018.

[92] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In Pro-

305

ceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1263–1272. JMLR. org, 2017.

[93] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[94] Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and
Richard E Turner. Meta-Learning probabilistic inference for prediction.
arXiv preprint arXiv:1805.09921, 2018.

[95] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard
Socher. A closer look at deep learning heuristics: Learning rate restarts,
warmup and distillation. arXiv preprint arXiv:1810.13243, 2018.

[96] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling
and benchmarking self-supervised visual representation learning. arXiv
preprint arXiv:1905.01235, 2019.

[97] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas
Griffiths. Recasting gradient-based meta-learning as hierarchical bayes.
arXiv preprint arXiv:1801.08930, 2018.

[98] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing, pages 6645–6649. IEEE,
2013.

[99] Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative
generative modeling of graphs. arXiv preprint arXiv:1803.10459, 2018.

[100] Melody Y. Guan, Varun Gulshan, Andrew M. Dai, and Geoffrey E. Hinton.
Who said what: Modeling individual labelers improves classification, 2018.

[101] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu,
Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner,
Tom Madams, Jorge Cuadros, et al. Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs. Jama, 316(22):2402–2410, 2016.

[102] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu,

306

Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner,
Tom Madams, Jorge Cuadros, Ramasamy Kim, Rajiv Raman, Philip Q
Nelson, Jessica Mega, and Dale Webster. Development and validation of
a deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. JAMA, 316(22):2402–2410, 2016.

[103] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration
of modern neural networks. abs/1706.04599, 2017.

[104] Danna Gurari, Kun He, Bo Xiong, Jianming Zhang, Mehrnoosh Sameki,
Suyog Dutt Jain, Stan Sclaroff, Margrit Betke, and Kristen Grauman. Pre-
dicting foreground object ambiguity and efficiently crowdsourcing the
segmentation (s). International Journal of Computer Vision, 126(7):714–730,
2018.

[105] Maryam Habibi, Leon Weber, Mariana Neves, David Luis Wiegandt, and
Ulf Leser. Deep learning with word embeddings improves biomedical
named entity recognition. Bioinformatics, 33(14):i37–i48, 2017.

[106] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding struc-
ture with randomness: Probabilistic algorithms for constructing approxi-
mate matrix decompositions. SIAM review, 53(2):217–288, 2011.

[107] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor
Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In Advances in neural information
processing systems, pages 8527–8537, 2018.

[108] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. In Proceedings of the 4th International Conference on Learning
Representations (ICLR’16), October 2015.

[109] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights
and connections for efficient neural networks. CoRR, abs/1506.02626, 2015.

[110] Ankur Handa, Michael Bloesch, Viorica Pătrăucean, Simon Stent, John
McCormac, and Andrew Davison. gvnn: Neural network library for
geometric computer vision. In European Conference on Computer Vision,
pages 67–82. Springer, 2016.

[111] Boris Hanin. Which neural net architectures give rise to exploding and

307

vanishing gradients? In Advances in Neural Information Processing Systems,
pages 582–591, 2018.

[112] Jack Hanson, Yuedong Yang, Kuldip Paliwal, and Yaoqi Zhou. Improving
protein disorder prediction by deep bidirectional long short-term memory
recurrent neural networks. Bioinformatics, 33(5):685–692, 2016.

[113] Frank E Harrell Jr, Kerry L Lee, Robert M Califf, David B Pryor, and
Robert A Rosati. Regression modelling strategies for improved prognostic
prediction. Statistics in medicine, 3(2):143–152, 1984.

[114] James Harrison, Apoorva Sharma, and Marco Pavone. Meta-learning pri-
ors for efficient online bayesian regression. arXiv preprint arXiv:1807.08912,
2018.

[115] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-
training. arXiv preprint arXiv:1811.08883, 2018.

[116] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer vision,
pages 2961–2969, 2017.

[117] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[118] Rhys Heffernan, Yuedong Yang, Kuldip Paliwal, and Yaoqi Zhou. Cap-
turing non-local interactions by long short-term memory bidirectional
recurrent neural networks for improving prediction of protein secondary
structure, backbone angles, contact numbers and solvent accessibility. Bioin-
formatics, 33(18):2842–2849, 2017.

[119] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network
robustness to common corruptions and perturbations. arXiv preprint
arXiv:1903.12261, 2019.

[120] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer,
and Balaji Lakshminarayanan. Augmix: A simple data processing method
to improve robustness and uncertainty. arXiv preprint arXiv:1912.02781,
2019.

[121] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espe-

308

holt, Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to
read and comprehend. In Advances in neural information processing systems,
pages 1693–1701, 2015.

[122] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal,
Phil Bachman, Adam Trischler, and Yoshua Bengio. Learning deep rep-
resentations by mutual information estimation and maximization. arXiv
preprint arXiv:1808.06670, 2018.

[123] Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, and Xi Chen. Population
based augmentation: Efficient learning of augmentation policy schedules.
arXiv preprint arXiv:1905.05393, 2019.

[124] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel.
Flow++: Improving flow-based generative models with variational de-
quantization and architecture design. arXiv preprint arXiv:1902.00275, 2019.

[125] Sepp Hochreiter. The vanishing gradient problem during learning recur-
rent neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

[126] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[127] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and
Daniel S Weld. Knowledge-based weak supervision for information ex-
traction of overlapping relations. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pages 541–550. Association for Computational Linguistics, 2011.

[128] Harold Hotelling. Relations between two sets of variates. In Biometrika,
volume 28, pages 321–337, 1936.

[129] Harold Hotelling. Relations between two sets of variates. In Breakthroughs
in statistics, pages 162–190. Springer, 1992.

[130] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,
Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Syl-
vain Gelly. Parameter-efficient transfer learning for nlp. arXiv preprint
arXiv:1902.00751, 2019.

309

[131] Andrew G Howard. Some improvements on deep convolutional neural
network based image classification. arXiv preprint arXiv:1312.5402, 2013.

[132] Jeremy Howard and Sebastian Ruder. Universal language model fine-
tuning for text classification. arXiv preprint arXiv:1801.06146, 2018.

[133] Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via
meta-learning. arXiv preprint arXiv:1810.02334, 2018.

[134] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay
Pande, and Jure Leskovec. Pre-training graph neural networks. arXiv
preprint arXiv:1905.12265, 2019.

[135] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4700–4708,
2017.

[136] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet
good for transfer learning? arXiv preprint arXiv:1608.08614, 2016.

[137] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[138] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-
Ilcus, Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie
Shpanskaya, et al. CheXpert: A large chest radiograph dataset with uncer-
tainty labels and expert comparison. In Thirty-Third AAAI Conference on
Artificial Intelligence, 2019.

[139] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image translation with conditional adversarial networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1125–
1134, 2017.

[140] Khurram Javed and Martha White. Meta-learning representations for
continual learning. arXiv preprint arXiv:1905.12588, 2019.

[141] Na Ji. Adaptive optical fluorescence microscopy. Nature methods, 14(4):374,
2017.

310

[142] Robin Jia and Percy Liang. Data recombination for neural semantic parsing.
arXiv preprint arXiv:1606.03622, 2016.

[143] Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams,
and Sandeep R Datta. Composing graphical models with neural networks
for structured representations and fast inference. In Advances in neural
information processing systems, pages 2946–2954, 2016.

[144] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator ar-
chitecture for generative adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4401–4410,
2019.

[145] MF Kasim, D Watson-Parris, L Deaconu, S Oliver, P Hatfield, DH Froula,
G Gregori, M Jarvis, S Khatiwala, J Korenaga, et al. Up to two billion times
acceleration of scientific simulations with deep neural architecture search.
arXiv preprint arXiv:2001.08055, 2020.

[146] Jeremy Kawahara, Sara Daneshvar, Giuseppe Argenziano, and Ghassan
Hamarneh. Seven-point checklist and skin lesion classification using multi-
task multimodal neural nets. IEEE journal of biomedical and health informatics,
23(2):538–546, 2018.

[147] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick
Riley. Molecular graph convolutions: moving beyond fingerprints. Journal
of computer-aided molecular design, 30(8):595–608, 2016.

[148] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian
deep learning for computer vision? In Advances in Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, volume 30,
pages 5580–5590, 2017.

[149] Pegah Khosravi, Ehsan Kazemi, Qiansheng Zhan, Marco Toschi, Jonas E
Malmsten, Cristina Hickman, Marcos Meseguer, Zev Rosenwaks, Olivier
Elemento, Nikica Zaninovic, et al. Robust Automated Assessment of
Human Blastocyst Quality using Deep Learning. bioRxiv, page 394882,
2018.

[150] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fer-
nanda Viegas, and Rory Sayres. Interpretability beyond feature attribution:
Quantitative testing with concept activation vectors (tcav). arXiv preprint
arXiv:1711.11279, 2017.

311

[151] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber,
Kristof T Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The (un)
reliability of saliency methods. In Explainable AI: Interpreting, Explaining
and Visualizing Deep Learning, pages 267–280. Springer, 2019.

[152] Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert
Müller, Dumitru Erhan, Been Kim, and Sven Dähne. Learning how to
explain neural networks: Patternnet and patternattribution. arXiv preprint
arXiv:1705.05598, 2017.

[153] D Kingma, Tim Salimans, R Josefowicz, Xi Chen, Ilya Sutskever, Max
Welling, et al. Improving variational autoencoders with inverse autore-
gressive flow. 2017.

[154] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[155] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with
invertible 1x1 convolutions. In Advances in Neural Information Processing
Systems, pages 10215–10224, 2018.

[156] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max
Welling. Semi-supervised learning with deep generative models. In Ad-
vances in neural information processing systems, pages 3581–3589, 2014.

[157] Sosuke Kobayashi. Contextual augmentation: Data augmentation by
words with paradigmatic relations. arXiv preprint arXiv:1805.06201, 2018.

[158] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural
networks for one-shot image recognition. In ICML Deep Learning Workshop,
volume 2, 2015.

[159] Simon AA Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jef-
frey De Fauw, Joseph R Ledsam, Klaus H Maier-Hein, SM Eslami,
Danilo Jimenez Rezende, and Olaf Ronneberger. A probabilistic u-net
for segmentation of ambiguous images. arXiv preprint arXiv:1806.05034,
2018.

[160] Kaname Kojima, Shu Tadaka, Fumiki Katsuoka, Gen Tamiya, Masayuki
Yamamoto, and Kengo Kinoshita. A recurrent neural network based
method for genotype imputation on phased genotype data. bioRxiv, page
821504, 2019.

312

[161] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-
supervised visual representation learning. arXiv preprint arXiv:1901.09005,
2019.

[162] Patrick T Komiske, Eric M Metodiev, and Jesse Thaler. Energy flow net-
works: deep sets for particle jets. Journal of High Energy Physics, 2019(1):121,
2019.

[163] Shu Kong and Charless Fowlkes. Image reconstruction with predictive
filter flow. arXiv preprint arXiv:1811.11482, 2018.

[164] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hin-
ton. Similarity of neural network representations revisited. arXiv preprint
arXiv:1905.00414, 2019.

[165] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet
models transfer better? arXiv preprint arXiv:1805.08974, 2018.

[166] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet
models transfer better? In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2661–2671, 2019.

[167] Jonathan Krause, Varun Gulshan, Ehsan Rahimy, Peter Karth, Kasumi Wid-
ner, Gregory S. Corrado, Lily Peng, and Dale R. Webster. Grader variability
and the importance of reference standards for evaluating machine learning
models for diabetic retinopathy. Ophthalmology, 125 8:1264–1272, 2018.

[168] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[169] Sneha Reddy Kudugunta, Ankur Bapna, Isaac Caswell, Naveen Arivazha-
gan, and Orhan Firat. Investigating multilingual nmt representations at
scale. arXiv preprint arXiv:1909.02197, 2019.

[170] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised
learning. arXiv preprint arXiv:1610.02242, 2016.

[171] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In
D S Touretzky, editor, Advances in Neural Information Processing Systems 2,
pages 598–605. Morgan-Kaufmann, 1990.

313

[172] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on Challenges in
Representation Learning, ICML, volume 3, page 2, 2013.

[173] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey
Pennington, and Jascha Sohl-Dickstein. Deep neural networks as gaussian
processes. In International Conference on Learning Representations (ICLR’17),
2018.

[174] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu
Kim, Chan Ho So, and Jaewoo Kang. Biobert: pre-trained biomedical
language representation model for biomedical text mining. arXiv preprint
arXiv:1901.08746, 2019.

[175] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto.
Meta-learning with differentiable convex optimization. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 10657–
10665, 2019.

[176] Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned
layerwise metric and subspace. arXiv preprint arXiv:1801.05558, 2018.

[177] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Kar-
ras, Miika Aittala, and Timo Aila. Noise2noise: Learning image restoration
without clean data. arXiv preprint arXiv:1803.04189, 2018.

[178] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems, pages
2177–2185, 2014.

[179] Chaolong Li, Zhen Cui, Wenming Zheng, Chunyan Xu, and Jian Yang.
Spatio-temporal graph convolution for skeleton based action recognition.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[180] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Mea-
suring the intrinsic dimension of objective landscapes. In International
Conference on Learning Representations, April 2018.

[181] Hailiang Li, Jian Weng, Yujian Shi, Wanrong Gu, Yijun Mao, Yonghua
Wang, Weiwei Liu, and Jiajie Zhang. An improved deep learning approach
for detection of thyroid papillary cancer in ultrasound images. Scientific
reports, 8(1):6600, 2018.

314

[182] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf. Pruning filters for efficient ConvNets. In International Conference on
Learning Representations (ICLR’17), pages 1–10, 2017.

[183] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E Hopcroft.
Convergent learning: Do different neural networks learn the same repre-
sentations? In FE@ NIPS, pages 196–212, 2015.

[184] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E Hopcroft.
Convergent learning: Do different neural networks learn the same repre-
sentations? In Iclr, 2016.

[185] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

[186] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

[187] Fang Liu, Zhaoye Zhou, Hyungseok Jang, Alexey Samsonov, Gengyan
Zhao, and Richard Kijowski. Deep convolutional neural network and 3d
deformable approach for tissue segmentation in musculoskeletal magnetic
resonance imaging. Magnetic resonance in medicine, 79(4):2379–2391, 2018.

[188] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi,
Lukasz Kaiser, and Noam Shazeer. Generating wikipedia by summarizing
long sequences. arXiv preprint arXiv:1801.10198, 2018.

[189] Shengyu Liu, Buzhou Tang, Qingcai Chen, and Xiaolong Wang. Effects of
semantic features on machine learning-based drug name recognition sys-
tems: word embeddings vs. manually constructed dictionaries. Information,
6(4):848–865, 2015.

[190] Xueliang Liu. Deep recurrent neural network for protein function predic-
tion from sequence. arXiv preprint arXiv:1701.08318, 2017.

[191] Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski,
Aldo A Faisal, Finale Doshi-Velez, and Emma Brunskill. Representation
balancing mdps for off-policy policy evaluation. In Advances in Neural
Information Processing Systems, pages 2644–2653, 2018.

315

[192] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-
policy policy gradient with state distribution correction. arXiv preprint
arXiv:1904.08473, 2019.

[193] Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo
Kohlberger, Aleksey Boyko, Subhashini Venugopalan, Aleksei Timofeev,
Philip Q Nelson, Greg S Corrado, et al. Detecting cancer metastases on
gigapixel pathology images. arXiv preprint arXiv:1703.02442, 2017.

[194] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3431–3440, 2015.

[195] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep
transfer learning with joint adaptation networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2208–2217.
JMLR. org, 2017.

[196] Romain Lopez, Jeffrey Regier, Michael Cole, Michael Jordan, and Nir Yosef.
A deep generative model for gene expression profiles from single-cell rna
sequencing. arXiv preprint arXiv:1709.02082, 2017.

[197] Donghuan Lu, Karteek Popuri, Gavin Weiguang Ding, Rakesh Balachandar,
and Mirza Faisal Beg. Multimodal and multiscale deep neural networks for
the early diagnosis of alzheimer’s disease using structural mr and fdg-pet
images. Scientific reports, 8(1):5697, 2018.

[198] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems, pages
4765–4774, 2017.

[199] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[200] Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata
Anand, Raphael R Eguchi, Possu Huang, and Richard Socher. Progen:
Language modeling for protein generation. bioRxiv, 2020.

[201] Martin Magill, Faisal Qureshi, and Hendrick de Haan. Neural networks
trained to solve differential equations learn general representations. In
Advances in Neural Information Processing Systems, pages 4075–4085, 2018.

316

[202] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He,
Manohar Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der
Maaten. Exploring the limits of weakly supervised pretraining. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 181–196,
2018.

[203] Niru Maheswaranathan, Alex H. Willams, Matthew D. Golub, Surya Gan-
guli, and David Sussillo. Universality and individuality in neural dy-
namics across large populations of recurrent networks. arXiv preprint
arXiv:1907.08549, 2019.

[204] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng
Yang, Haonan Wang, Ryan Marcus, Ravichandra Addanki, Mehrdad Khani,
Songtao He, et al. Park: An open platform for learning augmented com-
puter systems. 2019.

[205] Daniel L Marino, Kasun Amarasinghe, and Milos Manic. Building energy
load forecasting using deep neural networks. In IECON 2016-42nd Annual
Conference of the IEEE Industrial Electronics Society, pages 7046–7051. IEEE,
2016.

[206] Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga Abe,
Venkatesh N Murthy, Mackenzie Weygandt Mathis, and Matthias Bethge.
Deeplabcut: markerless pose estimation of user-defined body parts with
deep learning. Nature neuroscience, 21(9):1281, 2018.

[207] Mackenzie Weygandt Mathis and Alexander Mathis. Deep learning tools
for the measurement of animal behavior in neuroscience. Current Opinion
in Neurobiology, 60:1–11, 2020.

[208] AGDG Matthews, J Hron, M Rowland, RE Turner, and Z Ghahramani.
Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations (ICLR’18), 2018.

[209] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

[210] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing
and Optimizing LSTM Language Models. arXiv preprint arXiv:1708.02182,
2017.

317

[211] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An Anal-
ysis of Neural Language Modeling at Multiple Scales. arXiv preprint
arXiv:1803.08240, 2018.

[212] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[213] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositional-
ity. In Advances in neural information processing systems, pages 3111–3119,
2013.

[214] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision
for relation extraction without labeled data. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2,
pages 1003–1011. Association for Computational Linguistics, 2009.

[215] Ishan Misra and Laurens van der Maaten. Self-supervised learning of
pretext-invariant representations, 2019.

[216] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Vir-
tual adversarial training: a regularization method for supervised and
semi-supervised learning. IEEE transactions on pattern analysis and machine
intelligence, 41(8):1979–1993, 2018.

[217] Volodymyr Mnih and Geoffrey Hinton. Learning to label aerial images
from noisy data. International Conference on Machine Learning, 2012.

[218] Pim Moeskops, Max A Viergever, Adriënne M Mendrik, Linda S de Vries,
Manon JNL Benders, and Ivana Išgum. Automatic segmentation of mr
brain images with a convolutional neural network. IEEE transactions on
medical imaging, 35(5):1252–1261, 2016.

[219] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz.
Pruning convolutional neural networks for resource efficient inference. In
International Conference on Learning Representations (ICLR’17), November
2016.

[220] Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational
similarity in neural networks with canonical correlation. In Advances in
Neural Information Processing Systems, pages 5727–5736, 2018.

318

[221] Ari S. Morcos, David G.T. Barrett, Neil C. Rabinowitz, and Matthew
Botvinick. On the importance of single directions for generalization. In
International Conference on Learning Representations (ICLR’18), 2018.

[222] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj
Tewari. Learning with noisy labels. In Advances in Neural Information
Processing Systems 26, pages 1196–1204. 2013.

[223] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks
for human pose estimation. In European conference on computer vision, pages
483–499. Springer, 2016.

[224] Jiquan Ngiam, Daiyi Peng, Vijay Vasudevan, Simon Kornblith, Quoc V
Le, and Ruoming Pang. Domain adaptive transfer learning with specialist
models. arXiv preprint arXiv:1811.07056, 2018.

[225] Alex Nichol and John Schulman. Reptile: A scalable metalearning algo-
rithm. arXiv preprint arXiv:1803.02999, 2, 2018.

[226] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. Interpretml:
A unified framework for machine learning interpretability. arXiv preprint
arXiv:1909.09223, 2019.

[227] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual repre-
sentations by solving jigsaw puzzles. In European Conference on Computer
Vision, pages 69–84. Springer, 2016.

[228] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher
Ré. Hidden stratification causes clinically meaningful failures in machine
learning for medical imaging. arXiv preprint arXiv:1909.12475, 2019.

[229] Chris Olah. Understanding LSTM Networks, 2015. https://
colah.github.io/posts/2015-08-Understanding-LSTMs/.

[230] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael
Petrov, and Shan Carter. Zoom in: An introduction to circuits. Distill,
5(3):e00024–001, 2020.

[231] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visual-
ization. Distill, 2017. https://distill.pub/2017/feature-visualization.

319

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[232] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schu-
bert, Katherine Ye, and Alexander Mordvintsev. The building blocks of
interpretability. Distill, 2018. https://distill.pub/2018/building-blocks.

[233] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[234] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel
recurrent neural networks. arXiv preprint arXiv:1601.06759, 2016.

[235] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[236] F Pasa, V Golkov, F Pfeiffer, D Cremers, and D Pfeiffer. Efficient Deep
Network Architectures for Fast Chest X-Ray Tuberculosis Screening and
Visualization. Scientific reports, 9(1):6268, 2019.

[237] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the
exploding gradient problem. CoRR, abs/1211.5063, 2, 2012.

[238] Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained
convolutional neural networks for weakly supervised segmentation. In
Proceedings of the IEEE international conference on computer vision, pages
1796–1804, 2015.

[239] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304, 2017.

[240] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pages 1532–
1543, 2014.

[241] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean.
Efficient neural architecture search via parameter sharing. arXiv preprint
arXiv:1802.03268, 2018.

[242] Gianluca Pollastri, Darisz Przybylski, Burkhard Rost, and Pierre Baldi.
Improving the prediction of protein secondary structure in three and eight

320

classes using recurrent neural networks and profiles. Proteins: Structure,
Function, and Bioinformatics, 47(2):228–235, 2002.

[243] Ryan Poplin, Avinash V Varadarajan, Katy Blumer, Yun Liu, Michael V
McConnell, Greg S Corrado, Lily Peng, and Dale R Webster. Prediction
of cardiovascular risk factors from retinal fundus photographs via deep
learning. Nature Biomedical Engineering, 2(3):158, 2018.

[244] Rory M Power and Jan Huisken. A guide to light-sheet fluorescence
microscopy for multiscale imaging. Nature methods, 14(4):360, 2017.

[245] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer
Science Department Faculty Publication Series, page 80, 2000.

[246] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep
co-training for semi-supervised image recognition. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 135–152, 2018.

[247] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
OpenAI Blog, 1(8), 2019.

[248] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019.

[249] Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter
Szolovits, and Marzyeh Ghassemi. Continuous state-space models for
optimal sepsis treatment-a deep reinforcement learning approach. arXiv
preprint arXiv:1705.08422, 2017.

[250] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid
learning or feature reuse? towards understanding the effectiveness of
maml. arXiv preprint arXiv:1909.09157, 2019.

[251] Maithra Raghu, Katy Blumer, Greg Corrado, Jon Kleinberg, Ziad Ober-
meyer, and Sendhil Mullainathan. The algorithmic automation problem:
Prediction, triage, and human effort. arXiv preprint arXiv:1903.12220, 2019.

[252] Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Sendhil Mul-

321

lainathan, and Jon Kleinberg. Direct uncertainty prediction with applica-
tions to healthcare. arXiv preprint arXiv:1807.01771, 2018.

[253] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein.
Svcca: Singular vector canonical correlation analysis for deep learning
dynamics and interpretability. In Advances in Neural Information Processing
Systems, pages 6076–6085, 2017.

[254] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Trans-
fusion: Understanding transfer learning for medical imaging. In Advances
in Neural Information Processing Systems, pages 3342–3352, 2019.

[255] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta,
Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya,
et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with
deep learning. arXiv preprint arXiv:1711.05225, 2017.

[256] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ questions for machine comprehension of text. arXiv
preprint arXiv:1606.05250, 2016.

[257] Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David
Konerding, and Vijay Pande. Massively multitask networks for drug
discovery. arXiv preprint arXiv:1502.02072, 2015.

[258] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen
Wu, and Christopher Ré. Snorkel: Rapid training data creation with weak
supervision. Proceedings of the VLDB Endowment, 11(3):269–282, 2017.

[259] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot
learning. 2016.

[260] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse
high-fidelity images with vq-vae-2. arXiv preprint arXiv:1906.00446, 2019.

[261] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal
Shankar. Do imagenet classifiers generalize to imagenet? arXiv preprint
arXiv:1902.10811, 2019.

[262] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

322

[263] Scott E. Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Du-
mitru Erhan, and Andrew Rabinovich. Training deep neural networks on
noisy labels with bootstrapping. abs/1412.6596, 2014.

[264] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.

[265] Donatas Repecka, Vykintas Jauniskis, Laurynas Karpus, Elzbieta Rembeza,
Jan Zrimec, Simona Poviloniene, Irmantas Rokaitis, Audrius Laurynenas,
Wissam Abuajwa, Otto Savolainen, et al. Expanding functional protein
sequence space using generative adversarial networks. bioRxiv, page
789719, 2019.

[266] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i
trust you?: Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1135–1144. ACM, 2016.

[267] Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott,
C Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and
function emerge from scaling unsupervised learning to 250 million protein
sequences. bioRxiv, page 622803, 2019.

[268] David Rolnick, Andreas Veit, Serge J. Belongie, and Nir Shavit. Deep
learning is robust to massive label noise. CoRR, abs/1705.10694, 2017.

[269] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[270] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural at-
tention model for abstractive sentence summarization. arXiv preprint
arXiv:1509.00685, 2015.

[271] Olga Russakovsky and Li Fei-Fei. Attribute learning in large-scale datasets.
In European Conference of Computer Vision (ECCV), International Workshop on
Parts and Attributes, 2010.

[272] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan
Pascanu, Simon Osindero, and Raia Hadsell. Meta-learning with latent
embedding optimization. arXiv preprint arXiv:1807.05960, 2018.

323

[273] Andrei A Rusu, Mel Vecerik, Thomas Rothörl, Nicolas Heess, Razvan
Pascanu, and Raia Hadsell. Sim-to-real robot learning from pixels with
progressive nets. arXiv preprint arXiv:1610.04286, 2016.

[274] Ruhan Sa, William Owens, Raymond Wiegand, Mark Studin, Donald
Capoferri, Kenneth Barooha, Alexander Greaux, Robert Rattray, Adam
Hutton, John Cintineo, et al. Intervertebral disc detection in x-ray images
using faster r-cnn. In 2017 39th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pages 564–567. IEEE,
2017.

[275] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixel-
cnn++: Improving the pixelcnn with discretized logistic mixture likelihood
and other modifications. arXiv preprint arXiv:1701.05517, 2017.

[276] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108, 2019.

[277] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and
Timothy Lillicrap. Meta-learning with memory-augmented neural net-
works. In International Conference on Machine Learning, pages 1842–1850,
2016.

[278] Naomi Saphra and Adam Lopez. Understanding learning dynamics of
language models with SVCCA. arXiv preprint arXiv:1811.00225, 2018.

[279] Saman Sarraf, Ghassem Tofighi, et al. Deepad: Alzheimer disease classifi-
cation via deep convolutional neural networks using mri and fmri. BioRxiv,
page 070441, 2016.

[280] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[281] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the
IEEE International Conference on Computer Vision, pages 618–626, 2017.

[282] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent
Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson,

324

Alex Bridgland, et al. Improved protein structure prediction using poten-
tials from deep learning. Nature, pages 1–5, 2020.

[283] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neu-
ral machine translation models with monolingual data. arXiv preprint
arXiv:1511.06709, 2015.

[284] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of
Games, 2(28):307–317, 1953.

[285] Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeirotis. Get another
label? improving data quality and data mining using multiple, noisy
labelers. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’08, pages 614–622. ACM, 2008.

[286] Jianghong Shi, Eric Shea-Brown, and Michael Buice. Comparison against
task driven artificial neural networks reveals functional properties in
mouse visual cortex. In Advances in Neural Information Processing Systems,
pages 5765–5775, 2019.

[287] Susan M Shortreed, Eric Laber, Daniel J Lizotte, T Scott Stroup, Joelle
Pineau, and Susan A Murphy. Informing sequential clinical decision-
making through reinforcement learning: an empirical study. Machine
learning, 84(1-2):109–136, 2011.

[288] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning im-
portant features through propagating activation differences. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages
3145–3153. JMLR. org, 2017.

[289] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t ap-
proach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735,
2018.

[290] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

[291] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep in-
side convolutional networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034, 2013.

325

[292] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[293] Tensorflow Slim. Tensorflow slim inception-v3. https://github.com/
tensorflow/models/tree/master/research/slim, 2017.

[294] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. Smoothgrad: removing noise by adding noise. arXiv preprint
arXiv:1706.03825, 2017.

[295] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for
few-shot learning. In Advances in Neural Information Processing Systems,
pages 4077–4087, 2017.

[296] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby,
and Ole Winther. Ladder variational autoencoders. In Advances in neural
information processing systems, pages 3738–3746, 2016.

[297] Youyi Song, Ling Zhang, Siping Chen, Dong Ni, Baopu Li, Yongjing Zhou,
Baiying Lei, and Tianfu Wang. A deep learning based framework for
accurate segmentation of cervical cytoplasm and nuclei. In 2014 36th An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society, pages 2903–2906. IEEE, 2014.

[298] Charles Spearman. The proof and measurement of association between
two things. The American Journal of Psychology, pages 72–101, 1904.

[299] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and
Rob Fergus. Training convolutional networks with noisy labels. CoRR,
abs/1406.2080, 2014.

[300] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution
representation learning for human pose estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5693–5703,
2019.

[301] Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A Efros. Unsupervised do-
main adaptation through self-supervision. arXiv preprint arXiv:1909.11825,
2019.

[302] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution

326

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

for deep networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 3319–3328. JMLR. org, 2017.

[303] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and
Timothy M Hospedales. Learning to compare: Relation network for few-
shot learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1199–1208, 2018.

[304] I Sutskever, O Vinyals, and QV Le. Sequence to sequence learning with
neural networks. Advances in NIPS, 2014.

[305] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[306] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

[307] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Data augmen-
tation using random image cropping and patching for deep cnns. IEEE
Transactions on Circuits and Systems for Video Technology, 2019.

[308] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946, 2019.

[309] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and
efficient object detection. arXiv preprint arXiv:1911.09070, 2019.

[310] Ryutaro Tanno, Daniel Worrall, Aurobrata Ghosh, Enrico Kaden, Stamatios
N. Sotiropoulos, Antonio Criminisi, and Daniel C. Alexander. Bayesian
image quality transfer with cnns: Exploring uncertainty in dmri super-
resolution. Medical Image Computing and Computer Assisted Intervention,
pages 611–619, 2017.

[311] Antti Tarvainen and Harri Valpola. Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised deep
learning results. In Advances in neural information processing systems, pages
1195–1204, 2017.

327

[312] Dimitry Tegunov and Patrick Cramer. Real-time cryo-em data pre-
processing with warp. BioRxiv, page 338558, 2018.

[313] Arthur Tenenhaus and Michel Tenenhaus. Regularized generalized canon-
ical correlation analysis. Psychometrika, 76(2):257, 2011.

[314] Yee Liang Thian, Yiting Li, Pooja Jagmohan, David Sia, Vincent Ern Yao
Chan, and Robby T Tan. Convolutional neural networks for automated
fracture detection and localization on wrist radiographs. Radiology: Artifi-
cial Intelligence, 1(1):e180001, 2019.

[315] Eric Topol. High-performance medicine: the convergence of human and
artificial intelligence. Nature Medicine, 25:44–56, 2019.

[316] Eric J Topol. High-performance medicine: the convergence of human and
artificial intelligence. Nature medicine, 25(1):44–56, 2019.

[317] Raphael Townshend, Rishi Bedi, Patricia Suriana, and Ron Dror. End-to-
end learning on 3d protein structure for interface prediction. In Advances
in Neural Information Processing Systems, pages 15616–15625, 2019.

[318] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin
Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Man-
zagol, and Hugo Larochelle. Meta-Dataset: A dataset of datasets for
learning to learn from few examples. arXiv preprint arXiv:1903.03096, 2019.

[319] Vahe Tshitoyan, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin
Rong, Olga Kononova, Kristin A Persson, Gerbrand Ceder, and Anubhav
Jain. Unsupervised word embeddings capture latent knowledge from
materials science literature. Nature, 571(7763):95–98, 2019.

[320] Kensuke Umehara, Junko Ota, and Takayuki Ishida. Application of super-
resolution convolutional neural network for enhancing image resolution
in chest ct. Journal of digital imaging, 31(4):441–450, 2018.

[321] Viivi Uurtio, João M. Monteiro, Jaz Kandola, John Shawe-Taylor, Delmiro
Fernandez-Reyes, and Juho Rousu. A tutorial on canonical correlation
methods. ACM Comput. Surv., 50(6):95:1–95:33, November 2017.

[322] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals,
Alex Graves, et al. Conditional image generation with pixelcnn decoders.
In Advances in neural information processing systems, pages 4790–4798, 2016.

328

[323] Amber A Van Der Heijden, Michael D Abramoff, Frank Verbraak, Manon V
van Hecke, Albert Liem, and Giel Nijpels. Validation of automated screen-
ing for referable diabetic retinopathy with the idx-dr device in the hoorn
diabetes care system. Acta ophthalmologica, 96(1):63–68, 2018.

[324] Monica Van Such, Robert Lohr, Thomas Beckman, and James M Naessens.
Extent of diagnostic agreement among medical referrals. Journal of evalua-
tion in clinical practice, 23(4):870–874, 2017.

[325] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–6008,
2017.

[326] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and
Serge J. Belongie. Learning from noisy large-scale datasets with minimal
supervision. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6575–6583, 2017.

[327] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al.
Matching Networks for one shot learning. In Advances in neural information
processing systems, pages 3630–3638, 2016.

[328] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint
arXiv:1506.05869, 2015.

[329] Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of
representations in the transformer: A study with machine translation and
language modeling objectives. arXiv preprint arXiv:1909.01380, 2019.

[330] Christian Wachinger, Martin Reuter, and Tassilo Klein. Deepnat: Deep
convolutional neural network for segmenting neuroanatomy. NeuroImage,
170:434–445, 2018.

[331] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel Bowman. Superglue: A
stickier benchmark for general-purpose language understanding systems.
In Advances in Neural Information Processing Systems, pages 3266–3280, 2019.

[332] Kun Wang, Bite Yang, Guohai Xu, and Xiaofeng He. Medical question
retrieval based on siamese neural network and transfer learning method.
In International Conference on Database Systems for Advanced Applications,
pages 49–64. Springer, 2019.

329

[333] Nancy XR Wang, Ali Farhadi, Rajesh PN Rao, and Bingni W Brunton.
Ajile movement prediction: Multimodal deep learning for natural human
neural recordings and video. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[334] William Yang Wang and Diyi Yang. That’s so annoying!!!: A lexical and
frame-semantic embedding based data augmentation approach to auto-
matic categorization of annoying behaviors using# petpeeve tweets. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 2557–2563, 2015.

[335] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-
local neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7794–7803, 2018.

[336] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri,
and Ronald M Summers. Chestx-ray8: Hospital-scale chest x-ray database
and benchmarks on weakly-supervised classification and localization of
common thorax diseases. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3462–3471. IEEE, 2017.

[337] Zeyu Wang, Klint Qinami, Yannis Karakozis, Kyle Genova, Prem Nair,
Kenji Hata, and Olga Russakovsky. Towards fairness in visual recognition:
Effective strategies for bias mitigation. arXiv preprint arXiv:1911.11834,
2019.

[338] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos,
Koray Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic
with experience replay. arXiv preprint arXiv:1611.01224, 2016.

[339] Fabian L Wauthier and Michael I. Jordan. Bayesian bias mitigation for
crowdsourcing. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24, pages 1800–1808. 2011.

[340] Jason W Wei and Kai Zou. Eda: Easy data augmentation techniques
for boosting performance on text classification tasks. arXiv preprint
arXiv:1901.11196, 2019.

[341] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Con-
volutional pose machines. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4724–4732, 2016.

330

[342] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas Müller, Alexandr
Dibrov, Akanksha Jain, Benjamin Wilhelm, Deborah Schmidt, Coleman
Broaddus, Siân Culley, et al. Content-aware image restoration: pushing
the limits of fluorescence microscopy. Nature methods, 15(12):1090, 2018.

[343] David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. Struc-
tured training for neural network transition-based parsing. arXiv preprint
arXiv:1506.06158, 2015.

[344] Peter Welinder and Pietro Perona. Online crowdsourcing: Rating anno-
tators and obtaining cost-effective labels. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR Workshops 2010, San Francisco, CA,
USA, 13-18 June, 2010, pages 25–32, 2010.

[345] Keenon Werling, Arun Tejasvi Chaganty, Percy S Liang, and Christopher D
Manning. On-the-job learning with bayesian decision theory. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages 3465–3473. 2015.

[346] Julia K Winkler, Christine Fink, Ferdinand Toberer, Alexander Enk, Teresa
Deinlein, Rainer Hofmann-Wellenhof, Luc Thomas, Aimilios Lallas, An-
dreas Blum, Wilhelm Stolz, et al. Association between surgical skin mark-
ings in dermoscopic images and diagnostic performance of a deep learning
convolutional neural network for melanoma recognition. JAMA dermatol-
ogy, 155(10):1135–1141, 2019.

[347] Svante Wold, Michael Sjöström, and Lennart Eriksson. Pls-regression: a
basic tool of chemometrics. Chemometrics and intelligent laboratory systems,
58(2):109–130, 2001.

[348] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross
Girshick. Detectron2. https://github.com/facebookresearch/
detectron2, 2019.

[349] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb
Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a
benchmark for molecular machine learning. Chemical science, 9(2):513–530,
2018.

[350] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Philip S Yu. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596, 2019.

331

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

[351] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning
from massive noisy labeled data for image classification. 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2691–2699,
2015.

[352] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le.
Unsupervised data augmentation. arXiv preprint arXiv:1904.12848, 2019.

[353] Qizhe Xie, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Self-
training with noisy student improves imagenet classification. arXiv preprint
arXiv:1911.04252, 2019.

[354] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
1492–1500, 2017.

[355] Jun Xu, Xiaofei Luo, Guanhao Wang, Hannah Gilmore, and Anant Madab-
hushi. A deep convolutional neural network for segmenting and classify-
ing epithelial and stromal regions in histopathological images. Neurocom-
puting, 191:214–223, 2016.

[356] Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadiyaram, and Dhruv
Mahajan. Clusterfit: Improving generalization of visual representations.
arXiv preprint arXiv:1912.03330, 2019.

[357] Yilong Yang, Zhuyifan Ye, Yan Su, Qianqian Zhao, Xiaoshan Li, and De-
fang Ouyang. Deep learning for in vitro prediction of pharmaceutical
formulations. Acta pharmaceutica sinica B, 9(1):177–185, 2019.

[358] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhut-
dinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for
language understanding. arXiv preprint arXiv:1906.08237, 2019.

[359] Koichiro Yasaka, Hiroyuki Akai, Osamu Abe, and Shigeru Kiryu. Deep
learning with convolutional neural network for differentiation of liver
masses at dynamic contrast-enhanced ct: a preliminary study. Radiology,
286(3):887–896, 2017.

[360] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? In Advances in neural information
processing systems, pages 3320–3328, 2014.

332

[361] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

[362] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual represen-
tations for semantic segmentation. arXiv preprint arXiv:1909.11065, 2019.

[363] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk
Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In Proceedings of the IEEE International
Conference on Computer Vision, pages 6023–6032, 2019.

[364] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in
neural information processing systems, pages 3391–3401, 2017.

[365] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convo-
lutional networks. In European conference on computer vision, pages 818–833.
Springer, 2014.

[366] Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. Distant supervision
for relation extraction via piecewise convolutional neural networks. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1753–1762, 2015.

[367] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l:
Self-supervised semi-supervised learning. arXiv preprint arXiv:1905.03670,
2019.

[368] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen,
Carlos Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim
Neumann, Alexey Dosovitskiy, et al. The visual task adaptation benchmark.
arXiv preprint arXiv:1910.04867, 2019.

[369] Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive into
deep learning. Unpublished draft. Retrieved, 3:319, 2019.

[370] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gener-
alization. International Conference on Learning Representations (ICLR’16),
abs/1611.03530, 2016.

333

[371] Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created
equal? arXiv preprint arXiv:1902.01996, 2019.

[372] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-
Paz. mixup: Beyond empirical risk minimization. arXiv preprint
arXiv:1710.09412, 2017.

[373] Junkang Zhang, Haigen Hu, Shengyong Chen, Yujiao Huang, and Qiu
Guan. Cancer cells detection in phase-contrast microscopy images based on
faster r-cnn. In 2016 9th International Symposium on Computational Intelligence
and Design (ISCID), volume 1, pages 363–367. IEEE, 2016.

[374] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Resid-
ual dense network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2472–2481,
2018.

[375] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating
structured queries from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103, 2017.

[376] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Object detectors emerge in deep scene cnns. arXiv preprint
arXiv:1412.6856, 2014.

[377] Fengwei Zhou, Bin Wu, and Zhenguo Li. Deep meta-learning: learning to
learn in the concept space. arXiv preprint arXiv:1802.03596, 2018.

[378] Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and
Tiejun Zhao. Neural document summarization by jointly learning to score
and select sentences. arXiv preprint arXiv:1807.02305, 2018.

[379] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In Proceedings of the IEEE international conference on computer vision, pages
2223–2232, 2017.

[380] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visual-
izing deep neural network decisions: Prediction difference analysis. arXiv
preprint arXiv:1702.04595, 2017.

[381] Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and

334

Shimon Whiteson. Fast context adaptation via meta-learning. arXiv preprint
arXiv:1810.03642, 2018.

[382] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

335

	Biographical Sketch
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	I Introduction and Background Overview
	Introduction
	Background on Deep Learning
	Chapter Outline
	High Level Considerations for Deep Learning
	Templates for Deep Learning in Scientific Settings
	Deep Learning Workflow
	Deep Learning or Not?

	Deep Learning Libraries and Resources
	Standard Neural Network Models and Tasks
	Supervised Learning
	Multilayer Perceptrons
	Convolutional Neural Networks
	Graph Neural Networks
	Neural Networks for Sequence Data
	Section Summary

	Key (Supervised Learning) Methods
	Transfer Learning
	Domain Adaptation
	Multitask Learning
	Weak Supervision (Distant Supervision)
	Section Summary

	Interpretability, Model Inspection and Representation Analysis
	Feature Attribution and Per Example Interpretability
	Model Inspection and Representational Analysis
	Technical References

	Doing More with Less Data
	Self-Supervised Learning
	Semi-Supervised Learning
	Data Augmentation
	Data (Image) Denoising

	Advanced Deep Learning Methods
	Generative Models
	Reinforcement Learning

	Implementation Tips
	Conclusion

	II Insights on Neural Network Hidden Representations
	Quantitative Techniques for Insights on Deep Representations
	Overview of SVCCA and Analysis Insights
	Measuring Representations in Neural Networks
	Distributed Representations

	Scaling SVCCA for Convolutional Layers
	Scaling SVCCA with Discrete Fourier Transforms

	Applications of SVCCA
	Learning Dynamics with SVCCA
	Freeze Training
	Interpreting Representations: when are classes learned?
	Other Applications: Cross Model Comparison and compression

	Chapter Summary

	Improving Robustness of Representation Analysis and Applications to Generalization
	Canonical Correlation Analysis on Neural Network Representations
	Mathematical Details of Canonical Correlation
	Beyond Mean CCA Similarity

	Using CCA to measure similarity of converged solutions
	Generalizing networks converge to more similar solutions than memorizing networks
	Wider networks converge to more similar solutions
	Across many initializations and learning rates, networks converge to discriminable clusters of solutions

	CCA on Recurrent Neural Networks
	Learning Dynamics Through Training Time

	Chapter Discussion and Future Directions

	III Informing Algorithms for Efficient Learning
	Rapid Learning or Feature Reuse? Investigating Few-Shot Learning via Meta-Learning
	Related Work
	MAML, Rapid Learning, and Feature Reuse
	Overview of MAML
	Rapid Learning or Feature Reuse?

	The ANIL (Almost No Inner Loop) Algorithm
	Contributions of the Network Head and Body
	The Head at Test Time and the NIL (No Inner Loop) Algorithm
	Training Regimes for the Network Body

	Feature Reuse in Other Meta-Learning Algorithms
	Optimization and Model Based meta-learning

	Chapter Summary

	Understanding Transfer Learning with Applications to Medical Imaging
	Datasets
	Models and Performance Evaluation of Transfer Learning
	Description of Models
	Results
	The Very Small Data Regime

	Representational Analysis of the Effects of Transfer
	Convergence: Feature Independent Benefits and Weight Transfusion
	Chapter Summary and Discussion

	IV Human-AI Collaboration
	Direct Uncertainty Prediction for Medical Second Opinions
	The Doctor Disagreement Problem and Overview of Results
	Direct Uncertainty Prediction
	Toy Example on Mixture of Gaussians
	Example on SVHN and CIFAR-10

	Related Work
	Doctor Disagreements in DR
	Task Setup
	Models and First Experimental Results

	Predicting Disagreement with Consensus: Adjudicated Evaluation
	Ranking Evaluation

	Chapter Discussion

	The Algorithmic Automation Problem: Triage, Prediction and Human Effort
	General Framework
	Automation involving Algorithms and Humans
	Heuristics for Automation
	Overview of Results

	Medical Preliminaries, Data and Experimental Setup
	Data
	A Decision Making Algorithm for Diabetic Retinopathy
	Evaluation
	Aggregation and Thresholding

	The Triage Problem and Human Effort Reallocation
	Per Instance Error Diversity of Humans and Algorithms
	Performing Triage and Reallocating Human Effort
	Differential Costs and Zero-Error Subsets

	Related Work
	Discussion

	V Conclusion and Future Directions
	Conclusion and Future Directions
	Chapter 3 Appendix
	Mathematical details of CCA and SVCCA
	Additional Proofs and Figures from Section 3.2.1
	Proof of Theorem 1
	Proof of theorem 3
	Proof of theorem 4
	Proof of Theorem 2
	Proof of Theorem 1
	Computational Gains

	Per Layer Learning Dynamics Plots from Section 3.4.1
	Additional Figure from Section 3.4.4
	Experiment from Section 3.4.4

	Appendix to PWCCA and Generalization
	Performance Plots for Models
	Additional reduction methods for CCA
	Representation Dynamics in RNNs Through Sequence (Time) Steps
	Experimental details
	Additional control experiments

	Chapter 5 Appendix
	Few-Shot Image Classification Datasets and Experimental Setups
	Additional Details and Results: Freezing and Representational Similarity
	Experimental Details
	Details of Representational Similarity
	Similarity Before and After Inner Loop with Euclidean Distance
	CCA Similarity Across Random Seeds
	MiniImageNet-5way-1shot Freezing and CCA Over Training

	ANIL Algorithm: More Details
	An Example of the ANIL Update
	ANIL Learns Almost Identically to MAML
	ANIL and MAML Learn Similar Representations
	ANIL Implementation Details
	ANIL is Computationally Simpler Than MAML

	Further Results on the Network Head and Body
	Training Regimes for the Network Body
	Representational Analysis of Different Training Regimes

	Chapter 6 Appendix
	Details on Datasets, Models and Hyperparameters
	Additional Dataset Size Results
	CCA Details
	Additional Results from Representation Analysis
	The Fixed Feature Extraction Setting
	Additional Results on Feature Independent Benefits and Weight Transfusions
	Batch Normalization Layers
	Mean Var Init vs Using Knowledge of the Full Empirical ImageNet Weight Distribution
	Synthetic Gabor Filters

	Chapter 7 Appendix
	Proofs of Direct Uncertainty Prediction Results
	Mixture of Gaussians Setting
	SVHN and CIFAR-10 Setting
	Details of DUP in the Medical Domain
	Additional Results: Entropy, Finite Sample Behavior and Convergence Analysis
	Background on the Wasserstein Distance

	Chapter 8 Appendix
	Training Data and Models Details
	Computing Pr[Mi]
	Triage and Allocation Algorithm
	Results on other Thresholds

	Triage and Human Effort Reallocation with Model Grades
	Results on Additional Holdout Dataset

	Bibliography

